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Preface

These notes started in the Spring of 2004, but contain material that I have used in previous years.

I would appreciate any comments, suggestions, corrections, etc., which can be addressed at the email below.

David A. Santos
dsantos@ccp.edu

Things to do:

e Weave functions into counting, a la twelfold way. . .
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GNU Free Documentation License

Version 1.2, November 2002
Copyright © 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the
work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modificati of tr image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such,
“Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as “A ", “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network p Is a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:



A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

1. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the
Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in
the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements™ or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor ack: and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements™ or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do
this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements™, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History™; likewise combine any sections Entitled “Acknowledgements™, and any sections Entitled “Dedications”.
You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the

or the ic eq! of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation i considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a di between the translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

“You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by

the Free Software Foundation.



Chapter

Pseudocode

In this chapter we study pseudocode, which will allow us to mimic computer language in writing algorithms.

1.1 Operators

1 Definition (Operator) An operator is a character, or string of characters, used to perform an action on some entities. These
entities are called the operands.

2 Definition (Unary Operators) A unary operator is an operator acting on a single operand.

Common arithmetical unary operators are 4 (plus) which indicates a positive number, and — (minus) which indicates a negative
number.

3 Definition (Binary Operators) A binary operator is an operator acting on two operands.

Common arithmetical binary operators that we will use are + (plus) to indicate the sum of two numbers and — (minus) to
indicate a difference of two numbers. We will also use * (asterisk) to denote multiplication and / (slash) to denote division.

There is a further arithmetical binary operator that we will use.

4 Definition (mod Operator) The operator mod is defined as follows: fora > 0,5 >0,
a modb
is the integral non-negative remainder when a is divided by b. Observe that this remainder is one of the b numbers
o, 1, 2, ..., b—1

In the case when at least one of a or b is negative, we will leave @ mod b undefined.
5 Example We have
38 mod15=28,
15 mod38=15,
1961 mod 37 =0,

and
1966 mod 37 =5,

for example.
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6 Definition (Precedence of Operators) The priority or precedence of an operator is the order by which it is applied to its
operands. Parentheses ( ) are usually used to coerce precedence among operators. When two or more operators of the same
precedence are in an expression, we define the associativity to be the order which determines which of the operators will be
executed first. Left-associative operators are executed from left to right and right-associative operators are executed from right
to left.

Recall from algebra that multiplication and division have the same precedence, and their precedence is higher than addition and
subtraction. The mod operator has the same precedence as multiplication and addition. The arithmetical binary operators are
all left associative whilst the arithmetical unary operators are all right associative.

7 Example 15—3x4=3but (15—3)x4=48.

8 Example 12x (5 mod3)=24but (12%5) mod3=0.

9 Example 12 mod5+3*3=11but12 mod (5+3)*3=12 mod8x3=4x3=12.

1.2 Algorithms

In pseudocode parlance an algorithm is a set of instructions that accomplishes a task in a finite amount of time. If the algorithm
produces a single output that we might need afterwards, we will use the word return to indicate this output.

10 Example (Area of a Trapezoid) Write an algorithm that gives the area of a trapezoid whose height is / and bases are a and
b.

Solution: One possible solution is

Algorithm 1.2.1: AREATRAPEZOID(a, b, h)

return (/i * (aT+b> )

11 Example (Heron’s Formula) Write an algorithm that will give the area of a triangle with sides a, b, and c.

Solution: A possible solution is

Algorithm 1.2.2: AREAOFTRIANGLE(a,b,c)

return (.25*\/(a—i—b—f—c)*(b—i—c—a)*(c—i—a—b)*(a—i—b—c))

We have used Heron’s formula

Area = \/s(s—a)(s—b)(s—c): }L\/(a—l-b—i—c)(b—i—c—a)(c—l-a—b)(a+b—c),

where
a+b+c
S§=—

2
is the semi-perimeter of the triangle.

12 Definition The symbol < is read “gets” and it is used to denote assignments of value.
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13 Example (Swapping variables) Write an algorithm that will interchange the values of two variables x and y, that is, the
contents of x becomes that of y and viceversa.

Solution: We introduce a temporary variable ¢ in order to store the contents of x in y without erasing the contents of y:

(Algorithm 1.2.3: SWAP(x,y) )
(t—x comment: First store x in temporary place
I XYy comment: x has a new value.
et comment: y now receives the original value of x.

- J

If we approached the problem in the following manner

Algorithm 1.2.4: SWAPWRONG(x,y)
(x5
ly—6
{ Xy comment: x = 6 now.
'L ye—x comment: y takes the current value of x, i.e., 6.

we do not obtain a swap.

14 Example (Swapping variables 2) Write an algorithm that will interchange the values of two variables x and y, that is, the
contents of x becomes that of y and viceversa, without introducing a third variable.

Solution: The idea is to use sums and differences to store the variables. Assume that initially x =a and y = b.

(Algorithm 1.2.5: SWAP2(x,y) )
I{x<—x—i—y comment: x =a+bandy =b.
Ye—Xx—Yy comment: y=a+b—b=aandx=a+b.
(FexX—y comment:y=aandx=a+b—a=>.

NS J

1.3 Arrays

15 Definition An array is an aggregate of homogeneous types. The length of the array is the number of entries it has.

A 1-dimensional array is akin to a mathematical vector. Thus if X is 1-dimensional array of length n then

and all the n coordinates X [k] belong to the same set. We will follow the C-C++-Java convention of indexing the arrays from 0.
We will always declare the length of the array at the beginning of a code fragment by means of a comment.

A 2-dimensional array is akin to a mathematical matrix. Thus if ¥ is a 2-dimensional array with 2 rows and 3 columns then

Yy — [Y[O][O] Y[o][1] Y[O][2]]
yiajjo} vyl vy
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14 If-then-else Statements

16 Definition The If-then-else control statement has the following syntax:
if expression
(statementA — 1

then i :
statementA — I

(statementB — 1

else i :
statementB —J
and evaluates as follows. If expression is true then all statementA ’s are executed. Otherwise all statementB’s are executed.

17 Example (Maximum of 2 Numbers) Write an algorithm that will determine the maximum of two numbers.

Solution: Here is a possible approach.

Algorithm 1.4.2: MAX(x,y)

ifx>y
then return (x)
else return (y)

18 Example (Maximum of 3 Numbers) Write an algorithm that will determine the maximum of three numbers.

Solution: Here is a possible approach using the preceding function.

Algorithm 1.4.3: MAX3(x,y,z)

it Max(x,y) >z
then return (MAX(x,y))
else return (z)

19 Example (Compound Test) Write an algorithm that prints “Hello” if one enters a number between 4 and 6 (inclusive) and
“Goodbye” otherwise. You are not allowed to use any boolean operators like and, or, etc.

Solution: Here is a possible answer.

(Algorithm 1.4.4: HELLOGOODBYE(x) )
ifx>=4
(ifx <=6

then { then output (Hello.)
else output (Goodbye.)

9 else output (Goodbye.) )
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1.5 The for loop

20 Definition The for loop has either of the following syntaxes:'
for indexvariable < lowervalue to uppervalue
do statements
or
for indexvariable < uppervalue downto lowervalue
do statements
Here lower value and upper value must be non-negative integers with uppervalue > lowervalue.

21 Example (Factorial Integers) Recall that for a non-negative integer n the quantity n! (read “n factorial”) is defined as
follows. 0! = 1 and if n > O then n! is the product of all the integers from 1 to n inclusive:

n=1-2---n.

For example 5! =1-2-3-4-5=120. Write an algorithm that given an arbitrary non-negative integer n outputs n!.

Solution: Here is a possible answer.

(Algorithm 1.5.3: FACTORIAL(n)

comment: Must input an integer n > 0.

f1
ifn=0
then return (f)
el {fori<— lton
do f — fxi
\return ()

22 Example (Positive Integral Powers 1) Write an algorithm that will compute x", where x is a given real number and # is a
given positive integer.

Solution: We can approach this problem as we did the factorial function in example 21. Thus a possible answer would be

Algorithm 1.5.4: POWERI1(x,n)

power «— 1
fori—1ton

do power <« x * power
return (power)

In example 34 we shall examine a different approach.

23 Example (Reversing an Array) An array (X[0],...X[n — 1]) is given. Without introducing another array, put its entries in
reverse order.

Solution: Observe that we exchange
X[0] < X[n—1],

X[1] < X[n—2],

'The syntax in C, C++, and Java is slightly different and makes the for loop much more powerful than the one we are presenting here.

5
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and in general

X[i] & X[n—i—1].
This holds as long as i < n—1i— 1, that is 2i < n — 1, which happens if and only if 2i < n — 2, which happens if and only if
i <|(n—2)/2|. We now use a swapping algorithm, say the one of example 13.Thus a possible answer is

Algorithm 1.5.5: REVERSEARRAY(n,X)

comment: X is an array of length n.

fori—O0to [(n—2)/2]
do Swap(X[i],X[n—i—1])

24 Definition The command break stops the present control statement and jumps to the next control statement. The command
output(...) prints whatever is enclosed in the parentheses.

= Many a programmer considers using the break command an ugly practice. We will use it here and will
abandon it once we study the while loop.

25 Example What will the following algorithm print?

Algorithm 1.5.6: PRINTING(:)

fori—3toll
(ifi=7
do then break
else output (i)

Solution: We have, in sequence,

© i =3. Since 3 # 7, the programme prints 3.
® i =4. Since 4 # 7, the programme prints 4.
® [ =>5. Since 5 # 7, the programme prints 5.
® = 6. Since 6 # 7, the programme prints 6.

® i =7. Since 7 =7, the programme halts and nothing else is printed.

The programme ends up printing 3456.

26 Example (Maximum of n» Numbers) Write an algorithm that determines the maximum element of a 1-dimensional array
of n elements.

Solution: We declare the first value of the array (the O-th entry) to be the maximum (a sentinel value). Then we successively
compare it to other n — 1 entries. If an entry is found to be larger than it, that entry is declared the maximum.

(Algorithm 1.5.7: MAXENTRYINARRAY(7,X) h

comment: X is an array of length n.

max < X|[0]
fori—1ton—1
if X[i] > max
do { then max = X[i]
\return (max)
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Recall that a positive integer p > 1 is a prime if its only positive factors of p are either 1 or p. An integer greater than 1
which is not prime is said to be composite.” To determine whether an integer is prime we rely on the following result.

27 Theorem Let n > 1 be a positive integer. Either n is prime or n has a prime factor < /n.

Proof: If n is prime there is nothing to prove. Assume then than n is composite. Then n can be written as the
product n = abwith 1 < a < b. If every prime factor of n were > /n then we would have both a > \/n and b > \/n
then we would have n = ab > \/n\/n = n, which is a contradiction. Thus n must have a prime factor < \/n.Q

28 Example To determine whether 103 is prime we proceed as follows. Observe that |v/103| = 10.> We now divide 103 by
every prime < 10. If one of these primes divides 103 then 103 is not a prime. Otherwise, 103 is a prime. A quick division finds

103 mod2 =1,
103 mod3 =1,
103 mod5 =3,
103 mod7=35,

whence 103 is prime since none of these remainders is 0.
29 Definition (Boolean Variable) A boolean variable is a variable that only accepts one of two possible values: true or false.

The not unary operator changes the status of a boolean variable from true to false and viceversa.

30 Example (Eratosthenes’ Primality Testing) Given a positive integer n write an algorithm to determine whether it is prime.

Solution: Here is a possible approach. The special cases n = 1, n = 2, n = 3 are necessary because in our version of the for
loop we need the lower index to be at most the upper index.

(Algorithm 1.5.8: ISPRIME1(n) )

comment: » is a positive integer.
ifn=1

then output (n is a unit.)
ifn=2

then output (7 is prime.)
ifn=3

then output (n is prime.)
comment: If n > 4, then |\/n] > 2.

ifn>3
(ifn mod2=0

! then output (n is even. Its smallest factor is 2.)

.{ flag < true

Hfori—2to |\/n
(ifn modi=0

flag < false
then {break

then
else

N\ e

i if flag = true
i then output (n is prime.)
 else output (Not prime. n smallest factor is i.)

——

- J

2Thus 1 is neither prime nor composite.
3Here | x| denotes the floor of x, that is, the integer just to the left of x if x is not an integer and x otherwise.

7
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= From a stylistic point of view, this algorithm is unsatisfactory, as it uses the break statement. We will see in

example 35 how to avoid it.

31 Example (The Locker-room Problem) A locker room contains n lockers, numbered 1 through n. Initially all doors are
open. Person number 1 enters and closes all the doors. Person number 2 enters and opens all the doors whose numbers are
multiples of 2. Person number 3 enters and if a door whose number is a multiple of 3 is open then he closes it; otherwise
he opens it. Person number 4 enters and changes the status (from open to closed and viceversa) of all doors whose numbers
are multiples of 4, and so forth till person number n enters and changes the status of door number n. Write an algorithm to

determine which lockers are closed.

Solution: Here is one possible approach. We use an array Locker of size n+ 1 to denote the lockers (we will ignore
Locker[0]). The value true will denote an open locker and the value false will denote a closed locker.*

comment: Locker is an array of size n+ 1.
comment: Closing all lockers in the first for loop.

fori—1ton
do Locker[i] — false

for j—2ton
(for k — jton
do doif ¥k mod j=0
then Locker[k] = not Locker k]
for/—1ton
do {if Locker|l] = false
then output (Locker [ is closed.)

-

(Algorithm 1.5.9: LOCKERROOMPROBLEM(n, Locker)

comment: From open to closed and vice-versa in the second loop .

~N

1.6 Thewhile loop

32 Definition The while loop has syntax:
while test
do {body of loop

The commands in the body of the loop will be executed as long as test evaluates to true.

33 Example (Different Elements in an Array) An array X satisfies X[0] < X[1] < ---

finds the number of entries which are different.

Solution: Here is one possible approach.

< X[n—1]. Write an algorithm that

(Algorithm 1.6.2: DIFFERENT(n,X)

comment: X is an array of length n.
i<—0
different « 1
while i #n—1
(i—i+1
do < if x[i] #x[i — 1]
then different < different 4 1
return (different)

-

4We will later see that those locker doors whose numbers are squares are the ones which are closed.

8
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34 Example (Positive Integral Powers 2) Write an algorithm that will compute a”, where a is a given real number and n is a
given positive integer.

Solution: We have already examined this problem in example 22. From the point of view of computing time, that solution
is unsatisfactory, as it would incur into » multiplications, which could tax the computer memory if n is very large. A more
efficient approach is the following. Basically it consists of writing » in binary. We successively square x getting a sequence

k
x—=xt xS s

and we stop when 2% < n < 2¥*! For example, if n = 11 we compute x — x> — x* — x®. We now write 11 =8 +2+ 1 and so
1n_ .82
x=x%x"x.

(Algorithm 1.6.3: POWER2(x,n) h

power «— 1
C—Xx
k—n
while £ # 0
(ifk mod2=0

1
i then {k —k/2
c—c*xc
do {
i {k —k—1
1 else
L pOWET «— power * ¢
\return (power)

The while loop can be used to replace the for loop, and in fact, it is more efficient than it. For, the code for i < k to n
do something

is equivalent to

i—k
while i <=n
i—i+1
something
But more can be achieved from the while loop. For instance, instead of jumping the index one-step-at-a-time, we could

jump ¢ steps at a time by declaring i < i +¢. Also, we do not need to use the break command if we incorporate the conditions
for breaking in the test of the loop.

35 Example Here is the ISPRIME]1 programme from example 30 with while loops replacing the for loops. If n > 3, then n is
divided successively by odd integers, as it is not necessary to divide it by even integers.

9
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(Algorithm 1.6.6: ISPRIME2(n) h

comment: # is a positive integer.

ifn=1
then output (n is a unit.)
ifn=2
then output (n is prime.)
ifn=3
then output (7 is prime.)
ifn>3
(ifn mod2=0
then output (n is even. Its smallest factor is 2.)
i (flag < true
i i—1
i while i <= | /n] and flag = true
then i (i—i+2
else { do ifn modi=0
H i then {ﬂag «— false
! i if flag = true
i then output (n is prime.)
\ { else output (Not prime. 7 smallest factor is i.)
& /

Homework

36 Problem What will the following algorithm return for » = 5? You must trace the algorithm carefully, outlining all your steps.

(Algorithm 1.6.7: MYSTERY(n) )
x+<—0
i1
while n > 1
(ifnxi>4

| thenx— x+2n
do{ elsex«—x+n
In<—n—2
li—i+1
return (x)

N

37 Problem What will the following algorithm return for n = 3?

(‘Algorithm 1.6.8: MYSTERY(n) h

x—0

while n > 0
f
1fori— 1ton

do { do {forj&ito.r.z
i do {x<—zj+x
\n—n-1

return (x)

N

10
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38 Problem Assume that the division operator / acts as follows on the integers: if the division is not even, a/b truncates the decimal part
of the quotient. For example 5/2 =2,5/3 = 1. Assuming this write an algorithm that reverses the digits of a given integer. For example, if
123476 is the input, the output should be 674321. Use only one while loop,one mod operation, one multiplication by 10 and one division
by 10.

39 Problem Given is an array of length m + n, which is sorted in increasing order:
X0 <X[l]<...<X[m—-1]<X[m<...<X[m+n—1].
Without using another array reorder the array in the form
Xml - Xm+1]—... > Xm+n—1] - X[0] - X[1] - ... > X[m—1].

Do this using algorithm REVERSEARRAY from example 23 a few times.

40 Problem The Fibonacci Sequence is defined recursively as follows:

fo=0;, fi=1l, fo=1, fuixi=futfu-1,n=1

Write an algorithm that finds the n-th Fibonacci number.

41 Problem Write an algorithm which reads a sequence of real numbers and determines the length of the longest non-decreasing subse-
quence. For instance, in the sequence
7,8,7,8,9,2,1,8,7,9,9,10,10,9,

the longest non-decreasing subsequence is 7,9,9,10, 10, of length 5.
42 Problem Write an algorithm that reads an array of n integers and finds the second smallest entry.

43 Problem A partition of the strictly positive integer n is the number of writing n as the sum of strictly positive summands, without taking
the order of the summands into account. For example, the partitions of 4 are (in “alphabetic order” and with the summands written in
decreasing order)

I+1+1+124141;34+15242;4.

Write an algorithm to generate all the partitions of a given integer n.

Answers

36 In the first turn around the loop,n = 5,i = 1,n*i > 4 and thus x = 10. Now n = 3,i = 2, and we go a second turn around the loop. Since
nxi>4,x=10+2%3 = 16. Finally, n = 1,i = 3, and the loop stops. Hence x = 16 is returned.

38 Here is a possible approach.

(‘Algorithm 1.6.9: REVERSE(n) A

comment: 7 is a positive integer.
x<—0
while n # 0

I{comment: x accumulates truncated digit.
1

0 J X XE 10+7n mod 10
comment: We now truncate a digit of the input.

IUu—n/lO

return (x)

- J

39 Reverse the array first as
Xm+n—1]>Xm+n-2]>...>Xm >X[m—1]>...>X[0].

Then reverse each one of the two segments:

Xm—=Xm+1]—...=Xm+n—-1]-X[0] = X[1] — ... > X[m—1].

11
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40 Here is a possible solution.

(Algorithm 1.6.10: FIBONACCI(n)

ifn=0
then return (0)

{last «—0
else

current «— 1
fori—2ton
temp «— last 4 current
{last « current
current < temp
return (current)

-

41 Assume that the data is read from some file f. eof means “end of file.” newFE! and oldE! are the current and the previous elements. d is
the length of the current run of non-decreasing numbers. dMax is the length of the longest run.

(Algorithm 1.6.11: LARGESTINCREASINGSEQUENCE(f)

1+—d

1 — dMax

while not eof
(if newEl >= oldEl
i (d—d+1

do {' | {ifd > dMax
then { else then dMax — d

! i d—1

L \ 0ldEl — newEL

if d > dMax

S then dMax — d )

42 Here is one possible approach.

(‘Algorithm 1.6.12: SECONDSMALLEST(1, X)

comment: X is an array of length 7.

second « x[0]
minimum « second
fori—Oton—1
( if minimum —= second
if X[i] < minimum
then { then minimum « X /]
else second «— Xi]
(if X[i] < minimum
do

second < minimum
else

minimum « X [i]

Ao

else if X[i] > minimum and X[i] < second
then second «— X|i]

——

-

43 We list partitions of n in alphabetic order and with decreasing summands. We store them in an array of length n+ 1 with X[0] =0.. The
length of the partition is k and the summands are X[1]+ -+ X[k]. Initially k = n and X[1] = --- = X[n] = 1. At the end we have X[1] =n
and the rest are 0.

12
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13

(Algorithm 1.6.13: PARTITIONS(n)

s—k—1

while not ((s=1) or (X[s—1] > X[s]))
s—s—1

X[s] — X[s]+1

sum < 0

fori—s+1tok

{sum% sum + X [i]

for i — 1tosum—1

{X[s+i] —1

k+—s+sum—1

N

13
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Proof Methods

2.1 Proofs: Direct Proofs

A direct proof is one that follows from the definitions. Facts previously learned help many a time when making a direct proof.

44 Example Recall that
e an even number is one of the form 2k, where £ is an integer.
e an odd integer is one of the form 2/ 4 1 where [/ is an integer.
e an integer a is divisible by an integer b if there exists an integer ¢ such that a = bc.
Prove that
© the sum of two even integers is even,
the sum of two odd integers is even,
the sum of an even integer with and odd integer is odd,
the product of two even integers is divisible by 4,

the product of two odd integers is odd,

@ © 6 © ©®

the product of an even integer and an odd integer is even.

Solution: We argue from the definitions. We assume as known that the sum of two integers is an integer.
O If 2a and 2b are even integers, then 2a+2b = 2(a+b), Now a+ b is an integer, so 2(a+ b) is an even integer.
® If2c+1and 2d+1 are odd integers, then 2c+1+2d +1 =2(c+d+1), Now c+d + 1 is an integer, so 2(c+d + 1) is an even integer.

© Let 2f be an even integer and 2g + 1 be an odd integer. Then 2f +2g+1 =2(f+g) + 1. Since f+ g is an integer, 2(f +g) + 1 is an
odd integer.

O Let 2h 2k be even integers. Then (2h)(2k) = 4(hk). Since hk is an integer, 4(hk) is divisible by 4.
O Let2/+1 and 2m+ 1 be odd integers. Then

I+1)2m+1) =4ml 420 +2m+1=22ml +1+m) + 1.

Since 2ml + [+ n is an integer, 2(2ml +m+1) + 1 is an odd integer.

@ Let 2n be an even integer and let 20 + 1 be an odd integer. Then (2n)(20+ 1) = 4no +2n = 2(2no+1). Since 2no+ 1 is an integer,
2(2no+1) is an even integer.

45 Example Prove that if n is an integer, then n® — n is always divisible by 6.

Solution: We have n3 —n = (n— 1)n(n+ 1), the product of three consecutive integers. Among three consecutive integers there is at least an
even one, and exactly one of them which is divisible by 3. Since 2 and 3 do not have common factors, 6 divides the quantity (n — 1)n(n+ 1),
and so n3 —n is divisible by 6.

14
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46 Example Use the fact that the square of any real number is non-negative in order to prove the Arithmetic Mean-Geometric Mean Inequal-
ity: Vx> 0,¥y >0
xX+y

VIS ==

Solution: First observe that \/x — /Y is a real number, since we are taking the square roots of non-negative real numbers. Since the square of
any real number is greater than or equal to 0 we have

(VX—y)* >0.
Expanding

X2/ +y >0 = % > /3,
yielding the result.

47 Example Prove that a sum of two squares of integers leaves remainder 0, 1 or 2 when divided by 4.

Solution: An integer is either even (of the form 2k) or odd (of the form 2k + 1). We have
(2k)? = 42,
(k+1)2 = 4K +k)+1.

Thus squares leave remainder O or 1 when divided by 4 and hence their sum leave remainder 0, 1, or 2.

2.2 Proofs: Mathematical Induction

The Principle of Mathematical Induction is based on the following fairly intuitive observation. Suppose that we are to perform a task that
involves a certain number of steps. Suppose that these steps must be followed in strict numerical order. Finally, suppose that we know how
to perform the n-th task provided we have accomplished the n — 1-th task. Thus if we are ever able to start the job (that is, if we have a base
case), then we should be able to finish it (because starting with the base case we go to the next case, and then to the case following that, etc.).

Thus in the Principle of Mathematical Induction, we try to verify that some assertion P(n) concerning natural numbers is true for some
base case ko (usually kp = 1). Then we try to settle whether information on P(n — 1) leads to favourable information on P(n).

48 Theorem Principle of Mathematical Induction If a set .7 of positive integers contains the integer 1, and also contains the integer n+ 1
whenever it contains the integer n, then . = N.

The following versions of the Principle of Mathematical Induction should now be obvious.

49 Corollary If a set &/ of positive integers contains the integer m and also contains n+ 1 whenever it contains n, where n > m, then </
contains all the positive integers greater than or equal to m.

50 Corollary (Strong Induction) If a set 7 of positive integers contains the integer m and also contains n+ 1 whenever it contains m +
I,m+2,...,n,where n > m, then </ contains all the positive integers greater than or equal to .

We shall now give some examples of the use of induction.

51 Example Prove that the expression
333 26027

is a multiple of 169 for all natural numbers n.

Solution: Let P(n) be the assertion “3T € N with 33"+3 — 265 — 27 = 169T > We will prove that P(1) is true and that P(n — 1) == P(n). For
n =1 we are asserting that 3° —53 = 676 = 169 -4 is divisible by 169, which is evident.
Now, P(n— 1) means there is N € N such that 33("=1)+3 _26(n — 1) —27 = 169N, i.e., for n > 1,

33 _26n—1= 169N

for some integer N. Then
3343 _26n—27 =273 —26n—27 = 27(3%" —26n— 1) +676n

which reduces to
27-169N + 169 -4n,

which is divisible by 169. The assertion is thus established by induction.

15
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52 Example Prove that 2" > n, Vn € N.

Solution: The assertion is true for n =0, as 20 > 0. Assume that 2"~! > n— 1 for n > 1. Now,
2" =22"Y>2m-1)=2n-2=n+n-2.
Now,n—1>0 = n—2>0,wehave n+n—2 > n+0 = n, and so,
2" > n.

This establishes the validity of the n-th step from the preceding step and finishes the proof.

53 Example Prove that
(1+V2" +(1-v2)"
is an even integer and that

(1+vV2)" = (1-v2)"" = bV2

for some positive integer b, for all integers n > 1.

Solution: We proceed by induction on n. Let P(r) be the proposition: “(1++/2)%" 4 (1—+/2)?"is even and (14 v/2)>" — (1 —v/2)*" = by/2
for some b € N’ If n = 1, then we see that

(1+V2)*+(1-v2)* =6,
an even integer, and
(1+V2)? = (1-v2)* =4v2.
Therefore P(1) is true. Assume that P(n— 1) is true for n > 1, i.e., assume that

(14v2)2=D 4 (1 —v2)2=1) — 2N

for some integer N and that
(1 + \/E)Z(nfl) - (1 - \/E)Z(nfl) _ a\/i
for some positive integer a.
Consider now the quantity

(1+V2)" +(1-v2)" = (14 V22 (1 +V2)" 2+ (1-V2)2 (1 - V2)*" 2.

This simplifies to
(3+2v2)(1+V2)" 2+ (3-2V2)(1-V2)™" 2,
Using P(n — 1), the above simplifies to
12N +2v2aV2 = 2(6N + 2a),

an even integer and similarly
(1+V2)% — (1 -v2)*" =3aV2 +2V2(2N) = (3a+4N)V/2,

and so P(n) is true. The assertion is thus established by induction.

54 Example Prove that if k is odd, then 2742 divides
-1

for all natural numbers 7.

Solution: The statement is evident for n = 1, as k> — 1 = (k— 1)(k+ 1) is divisible by 8 for any odd natural number k because both
(k—1) and (k+ 1) are divisible by 2 and one of them is divisible by 4. Assume that 2"*2|k?" — 1, and let us prove that 2"*3 |k2n+l - L
As k¥ -1 = (K" —1)(K*" 4+ 1), we see that 2"*2 divides (k" — 1), so the problem reduces to proving that 2|(k*" + 1). This is obviously

true since k%" odd makes k> + 1 even.
55 Example The Fibonacci Numbers are given by
fo=0, fi=1, fup1=fot fum1, n21,
that is every number after the second one is the sum of the preceding two. Thus the Fibonacci sequence then goes like
0,1,1,2,3,5,8,13,21,....
Prove using the Principle of Mathematical Induction, that for integer n > 1,

Factfap1 = fE+ (=1

16
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Solution: For n =1, we have
0-1=fofi =12 =)' = -(1)",

and so the assertion is true for n = 1. Suppose n > 1, and that the assertion is true for n, that is

Factfap1 = fE+ (=1

Using the Fibonacci recursion, f,+2 = fu+1 + fn, and by the induction hypothesis, fn2 = fu—1fu+1 — (—1)". This means that

fnfn+2 = fn(fn+l+fn)
fnfthl‘i'fn2

fnfn+1 +fnflfn+l - (71)n
Fai1(fa+ fam1) + (=1)"H
= fn+1fn+l+(_1)n+17

and so the assertion follows by induction.

56 Example Prove that a given square can be decomposed into n squares, not necessarily of the same size, for alln =4,6,7,8,....

Solution: A quartering of a subsquare increases the number of squares by three (four new squares are gained but the original square is lost).
Figure 2.1 that n = 4 is achievable. If n were achievable, a quartering would make {n,n+3,n+6,n+9,...} also achievable. We will shew

Figure 2.1: Example 56. Figure 2.2: Example 56. Figure 2.3: Example 56.

now that n = 6 and n = 8 are achievable. But this is easily seen from the figures 2.2 and 2.3, and this finishes the proof.

57 Example In the country of SmallPesia coins only come in values of 3 and 5 pesos. Shew that any quantity of pesos greater than or equal
to 8 can be paid using the available coins.

Solution: We use Strong Induction. Observe that 8 =3+45,9=343+3,10 =5+35, so, we can pay 8,9, or 10 pesos with the available
coinage. Assume that we are able to pay n—3,n—2, and n— 1 pesos, that is, that 3x 4+ 5y = k has non-negative solutions fork=n—3,n—2
and n— 1. We will shew that we may also obtain solutions for 3x +5y = k for k =n,n+1 and n+2. Now

3x+5y=n—-3=3(x+1)+5y=n,

3x14+5y1 =n—-2=3(x;+1)+5y; =n—+1,
345y =n—1=3(xy+1)+5y, =n+2,

and so if the amounts n —3,n—2,n— 1 can be paid so can n,n+ 1,n+ 2. The statement of the problem now follows from Strong Induction.

2.3 Proofs: Reductio ad Absurdum

In this section we will see examples of proofs by contradiction. That is, in trying to prove a premise, we assume that its negation is true and
deduce incompatible statements from this.

58 Example Prove that 2003 is not the sum of two squares by proving that the sum of any two squares cannot leave remainder 3 upon
division by 4.

Solution: 2003 leaves remainder 3 upon division by 4. But we know from example 47 that sums of squares do not leave remainder 3 upon
division by 4, so it is impossible to write 2003 as the sum of squares.

17
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1
59 Example Shew, without using a calculator, that 6 — v/35 < 0"

1 1
Solution: Assume that 6 — /35 > 0 Then 6 — T > /35 or 59 > 10v/35. Squaring both sides we obtain 3481 > 3500, which is clearly

1
nonsense. Thus it must be the case that 6 — /35 < T

60 Example Letaj,ay,..., ap be an arbitrary permutation of the numbers 1,2,...,n, where n is an odd number. Prove that the product

(a1 =1)(az =2)--- (an—n)

is even.

Solution: First observe that the sum of an odd number of odd integers is odd. It is enough to prove that some difference a; — k is even.
Assume contrariwise that all the differences a; — k are odd. Clearly

S=(a—1)+(a2—2)+---+(an—n) =0,

since the a;’s are a reordering of 1,2,...,n. S is an odd number of summands of odd integers adding to the even integer 0. This is impossible.
Our initial assumption that all the a; — k are odd is wrong, so one of these is even and hence the product is even.

61 Example Prove that \/i is irrational.

Solution: For this proof, we will accept as fact that any positive integer greater than 1 can be factorised uniquely as the product of primes (up

to the order of the factors).
Assume that v/2 = 27 with positive integers a,b. This yields 2b*> = a®. Now both * and b? have an even number of prime factors. So

2b% has an odd numbers of primes in its factorisation and a® has an even number of primes in its factorisation. This is a contradiction.

62 Example Let a,b be real numbers and assume that for all numbers &£ > 0 the following inequality holds:
a<b+e.

Prove that a < b.

a—Db

Solution: Assume contrariwise that a > b. Hence > 0. Since the inequality a < b + ¢ holds for every € > 0 in particular it holds for

a—>b
&=

. This implies that

a—>b

a<b+ or a<b.

Thus starting with the assumption that @ > b we reach the incompatible conclusion that a < b. The original assumption must be wrong. We
therefore conclude that a < b.

63 Example (Euclid) Shew that there are infinitely many prime numbers.

Solution: We need to assume for this proof that any integer greater than 1 is either a prime or a product of primes. The following beautiful
proof goes back to Euclid.
Assume that {p1, pa,...,pn} is alist that exhausts all the primes. Consider the number

N=pip2---pn+1

This is a positive integer, clearly greater than 1. Observe that none of the primes on the list {py, p2,..., p, } divides N, since division by any
of these primes leaves a remainder of 1. Since N is larger than any of the primes on this list, it is either a prime or divisible by a prime outside
this list. Thus we have shewn that the assumption that any finite list of primes leads to the existence of a prime outside this list. This implies
that the number of primes is infinite.

64 Example If a,b,c are odd integers, prove that ax® + bx + ¢ = 0 does not have a rational number solution.

18
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Solution: Suppose P is a rational solution to the equation. We may assume that p and g have no prime factors in common, so either p and ¢

are both odd, or one is odd and the other even. Now
2
a <§> +b <§> +c=0 = ap2+bpq+cq2 =0.

If both p and p were odd, then ap? + bpg + cq? is also odd and hence # 0. Similarly if one of them is even and the other odd then either
ap?* +bpq or bpg+ cq? is even and ap? + bpq + cq? is odd. This contradiction proves that the equation cannot have a rational root.

2.4 Proofs: Pigeonhole Principle

The Pigeonhole Principle states that if n4- 1 pigeons fly to  holes, there must be a pigeonhole containing at least two pigeons. This apparently
trivial principle is very powerful. Thus in any group of 13 people, there are always two who have their birthday on the same month, and if the
average human head has two million hairs, there are at least three people in NYC with the same number of hairs on their head.

The Pigeonhole Principle is useful in proving existence problems, that is, we shew that something exists without actually identifying it
concretely.

65 Example (Putnam 1978) Let A be any set of twenty integers chosen from the arithmetic progression 1,4,...,100. Prove that there must
be two distinct integers in A whose sum is 104.
Solution: We partition the thirty four elements of this progression into nineteen groups

{1},{52},{4,100},{7,97},{10,94},... ,{49,55}.
Since we are choosing twenty integers and we have nineteen sets, by the Pigeonhole Principle there must be two integers that belong to one
of the pairs, which add to 104.

66 Example Shew that amongst any seven distinct positive integers not exceeding 126, one can find two of them, say a and b, which satisfy

b<a<2b.

Solution: Split the numbers {1,2,3,...,126} into the six sets
{1,2),13,4,5,6},{7.8,...,13,14},{15,16,...,29,30},

{31,32,...,61,62} and {63,64,...,126}.

By the Pigeonhole Principle, two of the seven numbers must lie in one of the six sets, and obviously, any such two will satisfy the stated
inequality.

67 Example Given any 9 integers whose prime factors lie in the set {3,7, 11} prove that there must be two whose product is a square.

Solution: For an integer to be a square, all the exponents of its prime factorisation must be even. Any integer in the given set has a prime
factorisation of the form 3¢7211¢. Now each triplet (a,b,c) has one of the following 8 parity patterns: (even, even, even), (even, even, odd),
(even, odd, even), (even, odd, odd), (odd, even, even), (odd, even, odd), (odd, odd, even), (odd, odd, odd). In a group of 9 such integers, there
must be two with the same parity patterns in the exponents. Take these two. Their product is a square, since the sum of each corresponding
exponent will be even.

Figure 2.4: Example 68. Figure 2.5: Example 69.

68 Example Prove that if five points are taken on or inside a unit square, there must always be two whose distance is <

S
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Solution: Split the square into four congruent squares as shewn in figure 2.4. Two of the points must fall into one of the smaller squares, and

2
the longest distance there is, by the Pythagorean Theorem, 4/ (%)2 + (%)2 = \/7_

69 Example Fifty one points are placed on and inside a square of side 1. Demonstrate that there must be three of them that fit inside a circle

f radius —.
of radius -

Solution: Divide the square into 25 congruent squares, as in figure 2.5. At least three of the points must fall into one of these mini-squares.

1 v2 _ 1
Form the circle with centre at the minisquare, and radius of the diagonal of the square, that is, 3 % > 7 proving the statement.

Homework

70 Problem Prove that if n > 4 is composite, then n divides (n—1)!.
71 Problem Prove that there is no primes triple p, p+2, p+4 except for 3,4,5.
72 Problem If x is an integer and 7 divides 3x -+ 2 prove that 7 also divides 15x> — 11x — 14.

73 Problem An urn has 900 chips, numbered 100 through 999. Chips are drawn at random and without replacement from the urn, and the
sum of their digits is noted. What is the smallest number of chips that must be drawn in order to guarantee that at least three of these digital
sums be equal?

74 Problem Let s be a positive integer. Prove that the closed interval [s;2s] contains a power of 2.

75 Problem Let p < g be two consecutive odd primes. Prove that p 4- g is a composite number, having at least three, not necessarily distinct,
prime factors.

76 Problem The following 4 x 4 square has the property that for any of the 16 squares composing it, the sum of the neighbors of that square
is 1. For example, the neighbors of a are e and b and so e+ b = 1. Find the sum of all the numbers in the 16 squares.

S |~ =

S| =[O
ST Bl IS B

a
e
i
m

77 Problem Prove, by arguing by contradiction, that there are no integers a,b, ¢, d such that

Ao 4242 = (P ax+b) (X +cx+d).

78 Problem Let a > 0. Use mathematical induction to prove that

1+ Vaa+1
V;+v@+\hw~~+vﬁ<—i1%5iﬁ

where the left member contains an arbitrary number of radicals.

X+

79 Problem Use the AM-GM Inequality: Vx> 0,Vy >0, |/xy < Y in order to prove that for all quadruplets of non-negative real numbers

a,b,c,d we have

4 a+b+c+d
vabed < ——m8 .
abcd < n

Then, by choosing a special value for d above, deduce that
, u+v+w
S < _
vuvw < 3

for all non-negative real numbers u,v,w.

20



Homework 21

80 Problem Let a, b, c be real numbers. Prove that if a, b, ¢ are real numbers then
a+b>+c*—ab—bc—ca >0.
By direct multiplication, or otherwise, prove that
@ + b+ —3abe = (a+b+c)(a* +b* +* —ab—be — ca).

Use the above two results to prove once again that
3 u+v+w
uvw < —3

for all non-negative real numbers u, v, w.

81 Problem Use the fact that any odd number is of the form 8k £ 1 or 8k 43 in order to give a direct proof that the square of any odd number
leaves remainder 1 upon division by 8. Use this to prove that 2001 is not the sum of three odd squares.

82 Problem Find, and prove by induction, the sum of the first n positive odd numbers.

83 Problem Prove by induction that if n non-parallel straight lines on the plane intersect at a common point, they divide the plane into 2n
regions.

84 Problem Demonstrate by induction that no matter how # straight lines divide the plane, it is always possible to colour the regions produced
in two colours so that any two adjacent regions have different colours.

85 Problem Demonstrate by induction that whenever the formula makes sense one has

in2"+lg
(cosB)(cos28)---(cos2"0) = ;lnnﬂm

86 Problem Demonstrate by induction that whenever the formula makes sense one has
sinZHx  x

- -sin —.
sin § 2

sinx 4+ sin2x—+-- - +sinnx =

87 Problem Prove by induction that 2" > n for integer n > 0.

88 Problem Prove, by induction on 7, that

1:242:2243.22 4. 4n-2" =2+ (n—1)2"1.

89 Problem An urn contains 28 blue marbles, 20 red marbles, 12 white marbles, 10 yellow marbles, and 8§ magenta marbles. How many
marbles must be drawn from the urn in order to assure that there will be 15 marbles of the same color?

90 Problem The nine entries of a 3 x 3 grid are filled with —1, 0, or 1. Prove that among the eight resulting sums (three columns, three rows,
or two diagonals) there will always be two that add to the same number.

91 Problem Forty nine women and fifty one men sit around a round table. Demonstrate that there is at least a pair of men who are facing
each other.

92 Problem An eccentric widow has five cats'. These cats have 16 kittens among themselves. What is the largest integer n for which one
can say that at least one of the five cats has n kittens?

93 Problem No matter which fifty five integers may be selected from
{1,2,...,100},

prove that one must select some two that differ by 10.

"Why is it always eccentric widows who have multiple cats?

21
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94 Problem (AHSME 1994) Label one disc “1”, two discs “2”, three discs “3”, ..., fifty discs “50”. Put these 1 +2+3+--- +50 = 1275
labeled discs in a box. Discs are then drawn from the box at random without replacement. What is the minimum number of discs that must
me drawn in order to guarantee drawing at least ten discs with the same label?

95 Problem Given any set of ten natural numbers between 1 and 99 inclusive, prove that there are two disjoint nonempty subsets of the set
with equal sums of their elements.

Answers

70 Either n is a perfect square, n = a® in which case 2 < a < 2a < n— 1 and hence a and 2a are among the numbers {3,4,...,n—1}ornis

not a perfect square, but still composite, withn =ab,1 <a<b<n—1.

71 If p > 3 and prime, p is odd. But then one of the three consecutive odd numbers p, p+2, p+4, must be divisible by 3 and is different
from 3 and hence not a prime.

72 We have 3x+2 = 7a, with a an integer. Furthermore, 15x2 — 11x — 14 = (3x+2)(5x — 7) = 7a(5x—7), whence 7 divides 15x*> — 11x— 14.

73 There are 27 different sums. The sums 1 and 27 only appear once (in 100 and 999), each of the other 25 sums appears thrice, at least.
Thus if 27 +25+ 1 = 53 are drawn, at least 3 chips will have the same sum.

74 If s is itself a power of 2 then we are done. Assume that s is strictly between two powers of 2: 2! < s < 2", Then s < 2" < 2s < 2'+1,
and so the interval [s;2s] contains 2", a power of 2.

Pta, is an integer. But p < g gives 2p < p+¢q < 2q and so p < ptq < g, that

75 Since p and g are odd, we know that p + ¢ is even, and so
is, the average of p and g lies between them. Since p and g are consecutive primes, any number between them is composite, and so divisible

by at least two primes. So p+¢q =2 (%) is divisible by the prime 2 and by at least two other primes dividing PTHI

76 The neighbors of

ni|o

is exactly the sum of all the elements of the table. Hence the sum sought is 6.

77 We have
24242 = (P 4ax+b) (P +ex+d)
X+ (a+0)x® +(d+b+ac)x* + (ad + be)x + bd.

Thus
bd=2, ad+bc=2, d+b+bc=2, a+c=2.

Assume a, b, c,d are integers. Since bd = 2, bd must be of opposite parity (one odd, the other even). But then d + b must be odd, and since
d+b+bc =2, bc must be odd, meaning that both b and ¢ are odd, whence d is even. Therefore ad is even, and so ad + bc =2 is even plus
odd, that is, odd: a contradiction since 2 is not odd.

/ 4
\/a+ a+ a+ ++a It vaat]

n radlcands

78 Let

Let us prove P(1), that is

1++/4 1
Va>0, Va< %.

1
To get this one, let’s work backwards. If a > 7

1+ Vaa+1

: 2ya<l++4a+1

2ya—1<+/4a+1
(2y/a—1)2 < (Vda+1)?
4a—4\/a+1<4a+1
—2y/a<0.

Vva<

free e




Answers 23

1
all the steps are reversible and the last inequality is always true. If a < 7 then trivially 2v/a — 1 < v/4a+ 1. Thus P(1) is true. Assume now
that P(n) is true and let’s derive P(n+1). From

1+ VAa+1 1+ Aa+1
\/a+\/a+\/a+~--+\/5<%=>\/a+\/a+\/a+-~-+\/5<\/a+%.

n radicands n+1 radicands

we see that it is enough to shew that

n l+vda+1 1++4da+1
2 N 2 ’
But observe that

14++vda+1 14++vda+1
(\/4a+1+1)2:4a+2\/4a+1+2 - %: a—i—%7
proving the claim.
79 We have
a+b+c+d
/ vab++Vcd b d
Vabed = \/ab-\/ag a;— ¢ < 2 2 2 :a+ :‘H_ .
Nowleta:mb:uc:wandd:W.Then
u+v+w+u+v+w /
— 1/4
Y uvw(u+;+w) < n 3 = (wvw)/* (;H—\;—i—w) S7u+;+w
= (ww)!/* < (7u+v+w)1*1/4
- 3 3/4
= (uvw)l/4 S (W)/
— (1,“)14))1/3Sm7

whence the required result follows.

80 Since squares of real numbers are non-negative, we have

(a=b)2+(h—c)+(c—a)?>0 <= 2a*+2b>+2c? —2ab—2bc—2ca >0
= a2+b2+cz—ab—bc—ca20.

Now, use the identity

3

X4y = (x+y)? = 3xy(x+y)

twice. Then
S+ 4+ —3abe = (a+b)?+ —3ab(a+b) —3abc
= (a+b+c)® =3(a+b)cla+b+c)—3abla+b+c)
(a+b+c)((a+b+c)? —3ac—3bc —3ab)
= (a+b+c)(a®+b*+c* —ab—bc—ca)

If a,b, ¢ are non-negative then a+ b+ ¢ > 0 and also a® + b + c> — ab — bc — ca > 0. This gives

334
%zabc.

The desired inequality follows upon putting u = a>,v = b3, w = ¢>.

81 We have
(8k+1)% = 64k> £ 16k +1 = 8(8k> £2) + 1,
(8k+3)? = 64k> £ 48k +9 = 8(8k* £ 6+ 1)+ 1,
proving that in all cases the remainder is 1 upon division by 8.
Now, a sum of three odd squares must leave remainder 3 upon division by 8. Thus if 2001 were a sum of three squares, it would leave

remainder 3 =141+ 1 upon division by 8. But 2001 leaves remainder 1 upon division by 8, a contradiction to the assumption that it is a
sum of three squares.
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82 We are required to find

143+ +(2n—1).

Observe that 1 = 12; 1 +3 =22, 14+345=3% 1+3+5+7 = 4>. We suspect that

1434+ 2n—1)=n%

which we will prove by induction. We have already established this for n = 1. Let P,_; be the proposition

which we assume true. Now

1434 +2n—3)=(n—1)%,

14+34+---4+2n—1) = 143+---+(2n-3)+(2n—-1)
= (mn-1)%+2n-1
= n?-2n+1+2n—1
= n27

establishing the truth of P,.

83 The assertion is clear for n = 1 since a straight line divides the plane into two regions. Assume P,_p, that is, that n — 1 non-parallel
straight lines intersecting at a common point divide the plane into 2(n — 1) = 2n — 2 regions. A new line non-parallel to them but passing
through a common point will lie between two of the old lines, and divide the region between them into two more regions, producing then

2n—2+2 = 2n regions, demonstrating the assertion.

84 For n =1 straight lines this is clear. Assume P,_1, the proposition that this is possible for n —1 > 1 lines is true. So consider the plane
split by n — 1 lines into regions and coloured as required. Consider now a new line added to the n — 1 lines. This line splits the plane into
two regions, say I and II. We now do the following: in region I we leave the original coloration. In region II we switch the colours. We now
have a coloring of the plane in the desired manner. For, either the two regions lie completely in region I or completely in region II, and they
are coloured in the desired manner by the induction hypothesis. If one lies in region I and the other in region II, then they are coloured in the
prescribed manner because we switched the colours in the second region.

85 For n = 0 this is the identity sin20 = 2sin 0 cos 6. Assume the statement is true for n — 1, that is, assume that

(cosB)(cos28)---(cos2"16) =

Then

(cosB)(cos28)---(cos2"0)

as wanted.

86 The formula clearly holds for n = 1. Assume that

sinx+sin2x+---

Then
sinx + sin2x+ - - - 4 sinnx

where we have used the sum identity

sin2"0
T 2%sin@’

(cos 6)(cos28)---(cos2"~10)(cos2"0)
sin2"6

H n
sin 5x sin (n—1)x
sin § 2

+sin(n—1)x =

sinx+sin2x+--- +sin(n — 1)x + sinnx
H n
sinZx _ )
- 2,( -sin(n—21>x +sinnx
s1n?
H Ti
sinZx _ )
2 -sin(n—zl”JrZsm%cos%

sin 3
- (n—1)x nx o X
<smT+2005751n7

X
sSin 5

(sin %)

s X Yy o X nx nx o X
<SIH70057—SleCOST-i‘ZCOSTSIH—

L) int)

sin3

H nx X T X nx
<sm70057 +sin 3 cos 5

L) Ging)

in X
" s 3

n
sSin T.X

i X

in X
- S o
s 2

sin(a+£b) = sinacosb+sinbcosa.
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87 Forn=0wehave 2 =1 > 0, and for n = 1 we have 2! =2 > 1 so the assertion is true when n = 0 and n = 1. Assume the assertion is
true for n — 1 > 0, that is, assume that 2"~ ! > n — 1. Examine

=22 =22 s 14 n—1>n—14+1=n,
using the induction hypothesis and the fact thatn —1 > 1.
88 Forn=1wehave 1-2=2+4(1— 1)22 , and so the statement is true for n = 1. Assume the statement is true for n, that is, assume
P(n): 1242224322 4+ 402" =24 (n—1)2"".
We would like to prove that we indeed have
P(n+1):1-242-22 4322 4. 4 (n+1)- 2" =24 n2" 2,
But adding (rn+1)2"+! to both sides of P(1) we obtain
1242224322 4 402"+ (n4+ 12" =24 (n— 1)2" 4 (n 4 1)2" = 24 22" =2 4 2" +2,
proving P(n+1).

89 If all the magenta, all the yellow, all the white, 14 of the red and 14 of the blue marbles are drawn, then in among these 8 + 10+ 12 4
14 4 14 = 58 there are no 15 marbles of the same color. Thus we need 59 marbles in order to insure that there will be 15 marbles of the same
color.

90 There are seven possible sums, each one a number in {—3,—2,—1,0,1,2,3}. By the Pigeonhole Principle, two of the eight sums must
add up to the same.

91 Pick a pair of different sex facing one another, that is, forming a “diameter” on the table. On either side of the diameter there must be
an equal number of people, that is, forty nine. If all the men were on one side of the diameter then we would have a total of 49+ 1 =50, a
contradiction.

92 We have W?ﬂ =4, so there is at least one cat who has four kittens.

93 First observe that if we choose n+ 1 integers from any string of 2n consecutive integers, there will always be some two that differ by n.
This is because we can pair the 2n consecutive integers

{a+1,a+2,a+3,...,a+2n}
into the n pairs

{a+l,a+n+1},{a+2,a+n+2},... . {a+n,a+2n},

and if n+ 1 integers are chosen from this, there must be two that belong to the same group.

So now group the one hundred integers as follows:
{1,2,...20},{21,22,...,40},

{41,42,...,60}, {61,62,...,80}

and
{81,82,...,100}.

If we select fifty five integers, we must perforce choose eleven from some group. From that group, by the above observation (let n = 10),
there must be two that differ by 10.

94 If we draw all the 1 +2+---+9 = 45 labelled “1”, ..., “9” and any nine from each of the discs “10”, ..., “50”, we have drawn
45+ 9-41 = 414 discs. The 415-th disc drawn will assure at least ten discs from a label.

95 There are 2'0 — 1 = 1023 non-empty subsets that one can form with a given 10-element set. To each of these subsets we associate the sum
of its elements. The maximum value that any such sum can achieve is 90+ 91+ --- +99 = 945 < 1023. Therefore, there must be at least two
different subsets that have the same sum.
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Chapter

Logic, Sets, and Boolean Algebra

3.1 Logic

96 Definition A boolean proposition is a statement which can be characterised as either true or false .

Whether the statement is obviously true or false does not enter in the definition. One only needs to know that its certainty can be established.

97 Example The following are boolean propositions and their values, if known:
0 72 =149, (true)
5> 6. (false)
If p is a prime then p is odd. ( false )
There exists infinitely many primes which are the sum of a square and 1. (unknown)
There is a G-d. (unknown)
There is a dog. ( true )
I am the Pope. ( false )

Every prime that leaves remainder 1 when divided by 4 is the sum of two squares. ( true )

® @90 © 0 6 o6 ©

Every even integer greater than 6 is the sum of two distinct primes. (unknown)

98 Example The following are not boolean propositions, since it is impossible to assign a true or false value to them.
©® Whenever I shampoo my camel.
® Sit on a potato pan, Otis!
O y—ux.

® This sentence is false.
99 Definition A boolean operator is a character used on boolean propositions. Its output is either true or false

We will consider the following boolean operators in these notes. They are listed in order of operator precedence and their evaluation rules are
given in Table 3.1.

©® — (not or negation),

® A (and or conjunction)
© V (or or disjunction)
® — (implies)

O = (equals)

— has right-to-left associativity, all other operators listed have left-to-right associativity.

ISy The V = or is inclusive, meaning that if aV b then either a is true, or b is true, or both a and b are true.
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a b | (-a) (anb) (avb) (a = b) (a=b)
F F T F F T T
F T T F T T F
T F F F T F F
T T F T T T T

Table 3.1: Evaluation Rules

100 Example Consider the propositions:
e ¢ :] will eat my socks.
e b :Itis snowing.
e c: I will go jogging.
The sentences below are represented by means of logical operators.
O (bV-b) = c: Whether or not it is snowing, I will go jogging.
® b — —c: Ifitis snowing, I will not go jogging.

® b = (aA-c): Ifitis snowing, I will eat my socks, but I will not go jogging.
101 Example —a = aV/ b is equivalent to (—a) = (aV b) upon using the precedence rules.
102 Example a = b = cis equivalent to (¢ = b) = ¢ upon using the associativity rules.
103 Example aA—b = c is equivalent to (a A—b) = c¢ by the precedence rules.
104 Example Write a code fragment that accepts three numbers, decides whether they form the sides of a triangle.

Solution: First we must have a > 0,b > 0,¢ > 0. Sides of length a,b, ¢ form a triangle if and only they satisfy the triangle inequalities::
a+b>c,

b+c>a,
c+a>b.

Algorithm 3.1.1: ISITATRIANGLE((a,b,c))

if ((a > 0) and (b > 0) and (c > 0)

and ((a+b>c)and (b+c > a)and (c+a > b))
then istriangle < true
else istriangle — false

return (istriangle)

105 Definition A truth table is a table assigning all possible combinations of 7 or F to the variables in a proposition. If there are n variables,
the truth table will have 2" lines.

106 Example Construct the truth table of the proposition aV —b Ac.

Solution: Since there are three variables, the truth table will have 23 = 8 lines. Notice that by the precedence rules the given proposition is
equivalent to aV (—b A c), since A has higher precedence than V. The truth table is in Table 3.2.

107 Definition Two propositions are said to be equivalent if they have the same truth table. If proposition P is equivalent to proposition Q
we write P = Q.
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a b c¢ | (=b) (-bAc)|aV(-bAc)
F F F T F F
F F T T T T
F T F F F F
F T T F F F
T F F T F T
T F T T T T
T T F F F T
T T T F F T
Table 3.2: Example 106.

a| (ma) (=(=a))

F T F

T F T

Table 3.3: Theorem 108.

108 Theorem (Double Negation) —(—a) =a.

Proof: From the truth table 3.3 the entries for a and —(—a) produce the same output, proving the assertion. Q4

109 Theorem (De Morgan’s Rules) —(aVb) = —aA—b and =(a Ab) = —aV —b.

Proof: Truth table 3 4 proves that —~(aV b) = —a A —b and truth table 3.5 proves that =(a A\b) = —aV —b.

a b | (avb) —(aVvb) (—a) (-b) (—-aA-b) a b | (anb) —(anb) (—a) (=b) (—aV-b)

F F F T T T T F F F T T T T

F T T F T F F F T F T T F T

T F T F F T F T F F T F T T

T T T F F F F T T T F F F F
Table 3.4: ~(aVb)=—-aA-b. Table 3.5: ~(a Ab) = —aV —b.

d
110 Example Negate AV —B.
Solution: Using the De Morgan Rules and double negation: ~(AV —B) = =AA —~(—=B) = “AAB.
111 Example Let p and g be propositions. Translate into symbols: either p or ¢ is true, but not both simultaneously.

Solution: By the conditions of the problem, if p is true then ¢ must be false, which we represent as p A —¢g. Similarly if ¢ is true, p must be
false and we must have —p A q. The required expression is thus

(pA=q)V (=pAgq).

112 Definition A predicate is a sentence containing variables, whose truth or falsity depends on the values assigned to the variables.

113 Definition (Existential Quantifier) We use the symbol 3 to mean “there exists.”

114 Definition (Universal Quantifier) We use the symbol V to mean “for all.”
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Sets

Observe that -V =dand -3 =V.

115 Example Write the negation of (Vn € N)(3x €]0;4o[) (nx < 1).

Solution: Since —(Vn € N) = (3n € N), =(3x €]0;+0[) = (Vx €]0;+20]) and —(nx < 1) = (nx > 1), the required statement is

3.2 Sets

We will consider a sef naively as a collection of objects called elements. We use the boldface letters N to denote the natural numbers (non-
negative integers) and Z to denote the integers. The boldface letters R and C shall respectively denote the real numbers and the complex

numbers.

If S is a set and the element x is in the set, then we say that x belongs to S and we write this as x € S. If x does not belong to S we write
x & S. For example if S = {n € N : n is the square of an integer }, then 4 € S but 2 ¢ S. We denote by card (A) the cardinality of A, that is, the

number of elements that A has.

If a set A is totally contained in another set B, then we say that A is a subset of B and we write this as A C B (some authors use the notation
A C B). For example, if S = {squares of integers}, then A = {1,4,9,16} is a subset of S. If 3x € A such that x € B, then A is not a subset of

(3n € N)(Vx €]0; +00[) (nx > 1).

B, which we write as A  B. Two sets A and B are equal if A C B and B C A.

116 Example Find all the subsets of {a,b,c}.

Solution: They are

117 Example Find all the subsets of {a,b,c,d}.

Solution: The idea is the following. We use the result of example 116. Now, a subset of {a,b,¢,d} either contains d or it does not. Since the

ST = @

S = {a}

S5 = {b}

S¢ = A{c}

Ss = {ab}
S¢ = A{b,c}
S7 = A{ca}
Ss = {a,b,c}

subsets of {a,b,c} do not contain d, we simply list all the subsets of {a,b,c} and then to each one of them we add d. This gives

S
$2
$3
S4
Ss
Se
$7
S8

2] So
{a} S10
{b} St
{c} S12
{a,b} S13
{b,c} S14
{c,a} S1s
{a,b,c} Sie6

118 Theorem A finite n-element set has 2" subsets.

Proof: We use induction and the idea of example 117. Clearly a set A with n = 1 elements has 2! = 2 subsets: @ and A itself.
Assume every set with n— 1 elements has 2"~ subsets. Let B be a set with n elements. If x € B then B\ {x} is a set withn— 1
elements and so by the induction hypothesis it has 2"~ subsets. For each subset S C B\ {x} we form the new subset S U {x}.

{d}

{a,d}
{b,d}
{c,d}
{a,b,d}
{b,c,d}
{c,a,d}
{a,b,c,d}

This is a subset of B. There are 2"~ such new subsets, and so B has a total of 2"~' +2"~1 = 2" sybsets. Q

119 Definition The union of two sets A and B, is the set

AUB={x:(x€A) V (xeB)}.
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This is read “A union B.” See figure 3.1. The intersection of two sets A and B, is
ANB={x:(x€A) A (x€B)}.

This is read “A intersection B.” See figure 3.2. The difference of two sets A and B, is
A\B={x:(x€eA) AN(x¢B)}.

This is read “A set minus B.” See figure 3.3.

Figure 3.1: AUB Figure 3.2: ANB Figure 3.3: A\ B Figure 3.4: CA

120 Definition Let A C X. The complement of A with respect to X is CA = X \ A.

Observe that CA is all that which is outside A. Usually we assume that A is a subset of some universal set U which is tacitly understood.
The complement CA represents the event that A does not occur. We represent CA pictorially as in figure 3 .4.

121 Example Let U = {0,1,2,3,4,5,6,7,8,9} be the universal set of the decimal digits and let A = {0,2,4,6,8} C U be the set of even
digits. Then CA = {1,3,5,7,9} is the set of odd digits.

Observe that

CAnA= o. 3.1

We also have the De Morgan Laws: if A and B share the same universal set, we have
C(AuB) = CANCB, (32
C(AnB) = CAUCB. (33)

We will now prove one of the De Morgan’s Rules.
122 Example Prove that ((AUB) = CANCB.

Solution: Let x € C(AUB). Then x € AUB. Thus x € AAx & B, that is, x € CA Ax € CB. This is the same as x € CA N CB. Therefore
C(AuB) cCANCB.

Now, let x € CANCB. Then x € CA Ax € CB. This means that x ¢ A Ax & B or what is the same x ¢ AU B. But this last statement asserts
that x € C(AUB). Hence CANCB C C(AUB).

Since we have shown that the two sets contain each other, it must be the case that they are equal.
123 Example Prove that A\ (BUC) = (A\B)N(A\C).

Solution: We have

x €A\ (BUC) x€ANxE (BVC)
(xed) A (xéB) A (x£C))
(xeA AN x¢B) N (x€A A x¢C)
(xeA\B) AN (x€A\C)
x€ (A\B)N(A\C)

11eee
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124 Example Shew how to write the union AUBUC as a disjoint union of sets.

Solution: The sets A, B\ A,C \ (AUB) are clearly disjoint and

AUBUC =AU (B\A)U(C\ (AUB)).

125 Example Letx; <xp <---<xyandy; <y <--- <y, be two strictly increasing sequences of integers. Write an algorithm to determine

{x17x27'"7xn}m{y17y27"'7ym}'

Solution:

33

(Algorithm 3.2.1: INTERSECTION(n,m,X,Y)

comment: X is an array of length 7.
comment: Y is an array of length m.

nl 0

ml «—0

common «— 0

while (n1 # n) and (m1 # m)
{ifX[n1+1] <Y[ml+1]
! thennl «—nl+1
i elseif X[nl+1] > Y[ml +1]

then m1 «— ml +1
nl—nl+1

else {ml —ml+1

common «— common + 1

do

S

Boolean Algebras and Boolean Operations

126 Definition A boolean algebra consists of a set X with at least two different elements 0 and 1, two binary operations + (addition) and -
(multiplication), and a unary operation — (called complementation) satistying the following axioms. (We use the juxtaposition AB to denote
the product A- B.)

1.

A+ B = B+ A (commutativity of addition)

2. AB = BA (commutativity of multiplication)

3. A+ (B+C) = (A+B)+C (associativity of addition)
4. A(BC) = (AB)C (associativity of multiplication)

5. A(B+C) = AB+ AC (distributive law)

6.
7
8
9

A+ (BC) = (A+B)(A+C) (distributive law)

. A4+0 = A (0 is the additive identity)

. Al = A (1 is the multiplicative identity)
CA+A=1

10. AA

AA=0

127 Example If weregard0=F,1=T,+ =V, - = A, and — = —, then the logic operations over {F, T} constitute a boolean algebra.

128 Example If we regard 0 = &, 1 =U (the universal set), + =U,-=MN,and — = C, then the set operations over the subsets of U constitute
a boolean algebra.

- 30
- as the greatest common divisor of two elements, and A = e The additive identity is 1 and the multiplicative identity is 30. Under these

operations X becomes a boolean algebra.
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32
A B|A A+B AB
0 0|1 0 0
0 1|1 1 0
1 0]0 1 0
1 1]0 1 1

Table 3.6: Evaluation Rules

The operations of complementation, addition and multiplication act on 0 and 1 as shewn in table 3.6.
The following properties are immediate.

130 Theorem 0 =1and T =0.

Proof: Since 0 is the additive identity, 0 = 04-0. But by axiom 9,0+0 = 1 and thus0 =0-+0 = 1.

Similarly, since 1 is the multiplicative identity, 1 = 1-1. But by axiom 10,1-1=0and thus 1=1-1=0.0

131 Theorem (Idempotent Laws) A+A=Aand AA=A
Proof: We have

A=A+0=A+A-A=(A+A)(A+A) = (A+A)(1) = A+A.

Similarly

A=Al1=A(A+A)=AA+A-A=AA+0 = AA.
a

132 Theorem (Domination Laws) A+1=1and A-0=0.

Proof: We have
A+1=A+(A+A)=(A+A)+A=A+A=1.

Also,
A-0=A(A-A) = (AA)A=AA=0.
a

133 Theorem (Uniqueness of the Complement) If AB=0and A+B = 1then B=A.

Proof: We have _ _ _ _
B=Bl=B(A+A)=BA+BA=0+BA=BA.

Also,
A=Al=A(A+B)=A-A+AB=AB.
Thus
B=BA=AB=A.
Q

134 Theorem (Involution Law) Z =A

Proof: By axioms 9 and 10, we have the identities

(]

By uniqueness of the complement we must have A = A.
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+B.

|

135 Theorem (De Morgan’s Laws) A+B=A-BandA-B =

Proof: Observe that o _ _
(A+B)+A-B=(A+B+A)(A+B+B)=(B+1)(A+1) =1,

and

(A+B)A-B=AA-B+BA-B=0+0=0.

Thus A - B is the complement of A+ B and so we must have A-B = A+ B.

To obtain the other De Morgan Law put A instead of A and B instead of B in the law just derived and use the involution law:

Taking complements once again we have

Q

136 Theorem AB-+AB = A.

Proof: Factoring
AB+AB=A(B+B)=A(1)=A.

a
137 Theorem A(A+B)=ABand A+AB=A+B.

Proof: Multiplying
A(A+B)=AA+AB=0+AB = AB.

Using the distributive law, _ _
A+AB=(A+A)(A+B)=1(A+B)=A+B.

a

138 Theorem (Absorption Laws) A+AB=Aand A(A+B) = A.

Proof: Factoring and using the domination laws:
A+AB=A(1+B)=Al=A.
Expanding and using the identity just derived:
A(A+B)=AA+AB=A+AB=A.

a

3.4 Sum of Products and Products of Sums

Given a truth table in some boolean variables, we would like to find a function whose output is that of the table. This can be done by either
finding a sum of products (SOP) or a product of sums (POS) for the table. To find a sum of products from a truth table:

O identify the rows having output 1.

® for each such row, write the variable if the variable input is 1 or write the complement of the variable if the variable input is 0, then
multiply the variables forming a term.

© add all such terms.
To find a product of sums from a truth table:
O identify the rows having output 0.

@ for each such row, write the variable if the variable input is O or write the complement of the variable if the variable input is 1, then
add the variables forming a sum

© multiply all such sums.
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139 Example Find a SOP and a POS for Z.

—_——m = OO O O
—_—_ 0 O == OQlW
—_ O = O = O = Ol0
»—»—OOO»—O»—‘N

Solution: The output (Z) 1’s occur on the rows (i) A= 0,8 =0,C = 0, so we form the term (A)(B)(C), (i) A=0,B=1,C =0, so we form
the term ABC, (iii) A = 1,B = 1,C = 0, so we form the term ABC, and (iv) A = B = C = 1, giving the term ABC. The required SOP is

Z = (A)(B)(C)+ABC +ABC + ABC.

The output (Z) 0’s occur on the rows (i) A = 0,B =0,C = 1, so we form the term A+ B+C, (ii) A= 0,B = 1,C = 1, so we form the term
A+B+C, (iii)A=1,B=0,C =0, so we form the term A+B+C, and (iv)A=1,B=0,C =1, giving the term A+B+C. The required
POS is

Z=(A+B+C)(A+B+C)(A+B+C)(A+B+C).

Using the axioms of a boolean algebra and the aforementioned theorems we may simplify a given boolean expression, or transform a
SOP into a POS or viceversa.

140 Example Convert the following POS to a SOP:
(A+BC)(A+BD).

Solution: _ L
AA+ABD +ABC +BCBD

= A+ABD+ABC+BCD
= A+BCD.

(A+BC)(A+BD)

141 Example Convert the following SOP to a POS: B
AB+CD.

Solution:

AB+CD = (AB+C)(AB+D)
= (A+C)(B+C)A+D)B+D).

142 Example Write WXY +WXZ+Y +Z as a sum of two products.

Solution: We have _ _ _ _
WXY+WXZ+Y+Z = WXY+Z)+Y+Z

Il
=
>
+
h<
N

where we have used the fact that AB+ B = A+ B and the De Morgan laws.

3.5 Logic Puzzles

The boolean algebra identities from the preceding section may help to solve some logic puzzles.

143 Example Brown, Johns and Landau are charged with bank robbery. The thieves escaped in a car that was waiting for them. At the
inquest Brown stated that the criminals had escaped in a blue Buick; Johns stated that it had been a black Chevrolet, and Landau said that it
had been a Ford Granada and by no means blue. It turned out that wishing to confuse the Court, each one of them only indicated correctly
either the make of the car or only its colour. What colour was the car and of what make?

Solution: Consider the sentences
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= the car is blue

the car is a Buick

the car is black

the car is a Chevrolet

= the caris a Ford Granada

T O™ >
1l

Since each of the criminals gave one correct answer, it follows that Brown’s declaration A + B is true. Similarly, Johns’s declaration C + D is
true, and Landau’s declaration A + E is true. It now follows that

(A+B)-(C+D)-(A+E)
is true. Upon multiplying this out, we obtain
(A-C-A)+(A-C-E)+(A-D-A)+(A-D-E)+(B-C-A)+(B-C-E)+(B-D-A)+ (B-D-E).

From the hypothesis that each of the criminals gave one correct answer, it follows that each of the summands, except the fifth, is false. Thus
B-C-Ais true, and so the criminals escaped in a black Buick.

144 Example Margie, Mimi, April, and Rachel ran a race. Asked how they made out, they replied:
Margie: “April won; Mimi was second.”

Mimi: “April was second and Rachel was third.”

April: “Rachel was last; Margie was second.”

If each of the girls made one and only one true statement, who won the race?

Solution: Consider the sentences

= April was first
April was second
Mimi was second
Margie was second
Rachel was third

= Rachel was last

ECECR RS
I

Since each of the girls gave one true statement we have that
(A+C)(B+E)(F+D)=1.

Multiplying this out
ABF +~ABD +AEF +AED+CBF +CBD+CEF +CED = 1.

Now, AB = EF = BC = CD = 0 so the only surviving term is AED and so April was first, Margie was second, Rachel was third, and Mimi
was last.

145 Example Having returned home, Maigret rang his office on quai des Orfevres.
“Maigret here . Any news?”

“Yes Chief. The inspectors have reported. Torrence thinks that if Francois was drunk, then either Etienne is the murderer or Frangois is
lying. Justin is of the opinion that either Etienne is the murderer or Fran¢ois was not drunk and the murder occurred after midnight. Inspector
Lucas asked me to tell you that if the murder had occurred after midnight, then either Etienne is the murderer or Frangois is lying. Then there
was aring from ....”

“That’s all, thanks. That’s enough!” The commissar replaced the receiver. He knew that when Francois was sober he never lied. Now
everything was clear to him. Find, with proof, the murderer.

Solution: Represent the following sentences as:

= Francgois was drunk,

Etienne is the murderer,

Frangois is telling a lie,

= the murder took place after midnight.

5Aw>
|
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We then have
A = (B+C), B+AD, D = (B+C).

Using the identity
X = Y=X+Y,

we see that the output of the product of the following sentences must be 1:
(A+B+C)(B+AD)(D+B+C).
After multiplying the above product and simplifying, we obtain
B-+CAD.
So, either Etienne is the murderer, or the following events occurred simultaneously: Frangois lied, Francois was not drunk and the murder

took place after midnight. But Maigret knows that AC = 0, thus it follows that E = 1, i.e., Etienne is the murderer.

Homework

146 Problem Construct the truth table for (p = ¢) Agq.

147 Problem By means of a truth table, decide whether (pAg) V (—p) = pV (—p). That is, you want to compare the outputs of (pAq) V (—p)
and pV (—p).

148 Problem Explain whether the following assertion is true and negate it without using the negation symbol —:

VneNdImeN (n>3 — (n47)? >49+m)

149 Problem Explain whether the following assertion is true and negate it without using the negation symbol —:

VneNImeN (i >4n = 2" >2"+10)
150 Problem Prove by means of set inclusion that (AUB)NC = (ANC)U (BNC).

151 Problem Obtain a sum of products for the truth table

—_——— = O O O O
—_—_ 0 O = = O Ol
—_ O = O = O = Ol0

152 Problem Use the Inclusion-Exclusion Principle to determine how many integers in the set {1,2,...,200} are neither divisible by 3 nor
7 but are divisible by 11.

Answers
146
P 4|p=4q (p=4q9)Nq
F F T F
F T T T
T F F F
T T T T
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147 The desired truth table is

P _q|phNg —p pV-p (pAg)V(-p)
F F| F T T T
F T| F T T T
T F| F F T F
T T| T F T T

148 The assertion is true. We have
(n+7)% >49+m < n’®+14n>m.

Hence, taking m = n® + 14n — 1 for instance (or any smaller number), will make the assertion true.

150 We have,

xe(AUB)NC x€(AUB)AxeC
(xeAvxeB)AxeC
(xeAAxeC)V(xeBAxeC)
(xeANC)V(xe BNC)

x€(ANC)U(BNC),

rrees

which establishes the equality.

151

152 10
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Relations and Functions

4.1 Partitions and Equivalence Relations

153 Definition Let . # @ be a set. A partition of .7 is a collection of non-empty, pairwise disjoint subsets of . whose union is .7 .

154 Example Let
2Z={...,—6,—4,-2,0,2,4,6,...} =0

be the set of even integers and let
2Z+1={...,-5-3,-1,1,3,5...} =1

be the set of odd integers. Then
2Z)U(2Z+1) =27, 2Z)N(2Z+1) =2,

and so {27,271} is a partition of Z.

155 Example Let
3Z2={...-9,,-6,-3,0,3,6,9,...} =0

be the integral multiples of 3, let
3Z+1={...,-8,-5-21,47,..}=1

be the integers leaving remainder 1 upon division by 3, and let
3Z+2={...,-7,—-4,-1,2,58,...} =2
be integers leaving remainder 2 upon division by 3. Then
32)U(B3z+1)U(3Z2+2) =17,
(BZ)N(3Z+1)=w, 3Z)N(3Z+2)=2,32+1)N(3Z+2) =2,
and so {3Z,3Z+ 1,3Z+2} is a partition of Z.

= Notice that 0 and 1 do not mean the same in examples 154 and 155. Whenever we make use of this notation, the integral
divisor must be made explicit.

156 Example Observe
R=(QUR\Q), o=(Q)nN[R\Q),

which means that the real numbers can be partitioned into the rational and irrational numbers.
157 Definition Let A, B be sets. A relation R is a subset of the Cartesian product A x B. We write the fact that (x,y) € Rasx ~ y.

158 Definition Let A be a set and R be a relation on A X A. Then R is said to be
o reflexive if (Vx € A),x ~ x,

e symmetric if (V(x,y) € A%),x~y = y~ux,
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e anti-symmetric if (V(x,y) € A?), (x ~y) and (y ~x) = x =1y,
e transitive if (V(x,y,z) € A3),(x ~y) and (y ~z) = (x ~2).

A relation R which is reflexive, symmetric and transitive is called an equivalence relation on A. A relation R which is reflexive, anti-symmetric
and transitive is called a partial order on A.

159 Example Let.” ={All Human Beings}, and define ~ on . as a ~ b if and only if a and b have the same mother. Then a ~ a since any
human « has the same mother as himself. Similarly,a ~b = b ~aand (a ~ b) and (b ~ ¢) = (a ~ c). Therefore ~ is an equivalence
relation.

160 Example Let L be the set of all lines on the plane and write /; ~ I if /1 ||/, (the line /; is parallel to the line /). Then ~ is an equivalence
relation on L.

161 Example Let X be a collection of sets. Write A ~ B if A C B. Then ~ is a partial order on X.

162 Example For (a,b) € R? define
a~bed b >2.

Determine, with proof, whether ~ is reflexive, symmetric, and/or transitive. Is ~ an equivalence relation?

Solution: Since 0% + 02 # 2, we have 0 ~ 0 and so ~ is not reflexive. Now,

a~b = d24b?
& bryad?
& bea,

s0 ~ is symmetric. Also 0 ~ 3 since 0% 43% > 2 and 3 ~ 1 since 3%+ 12 > 2. But 0 » 1 since 02 + 12 3 2. Thus the relation is not transitive.
The relation, therefore, is not an equivalence relation.

163 Example For (a,b) € (Q*)? define the relation ~ as follows: a ~ b < % € Z. Determine whether this relation is reflexive, symmetric,
and/or transitive.

Solution: @ ~ a since & = 1 € Z, and so the relation is reflexive. The relation is not symmetric. For 2 ~ 1 since % € Z but 1 = 2 since % Z7.

The relation is transitive. For assume a ~ b and b ~ c. Then there exist (m,n) € Z? such that G =m, b

= = n. This gives

a

b

c

=mn € Z,

SR

and soa ~ c.

164 Example Give an example of a relation on Z* which is reflexive, but is neither symmetric nor transitive.

. . . 2 . . 2
Solution: Here is one possible example: puta ~ b < % € Z. Then clearly if a € Z* we have a ~ a since ¢ j“ =a+1&€Z. On the
Lo L 2 2 . - . .
other hand, the relation is not symmetric, since 5 ~ 2 as ST+5 =15€Zbut2 45, as % = g ¢ Z. It is not transitive either, since
2 2 2
SP eZ = 5~3and 3P €Z = 3~ 12but 72 ¢ Z and s0 5~ 12.

165 Definition Let ~ be an equivalence relation on a set .. Then the equivalence class of a is defined and denoted by
d={xe 7 :x~a}.
166 Lemma Let ~ be an equivalence relation on a set .. Then two equivalence classes are either identical or disjoint.
Proof: We prove that if (a,b) € .2, and [a] N [b] # @ then [a] = [b]. Suppose that x € [a] N [b]. Now x € [a] = x~a =
a ~ x, by symmetry. Similarly, x € [b] => x ~ b. By transitivity
(a~x)and (x ~b) = a~b.

Now, if y € [b] then b ~ y. Again by transitivity, a ~y. This means that y € [a]. We have shewn that y € [b] = y € [a] and so
[b] C [a]. In a similar fashion, we may prove that [a] C [b]. This establishes the result. Q
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As a way of motivating the following result, let us consider the following example. Suppose that a child is playing with 10 bricks, which
come in 3 different colours and are numbered 1 through 10. Bricks 1 through 3 are red, bricks 4 through 7 are white and bricks 8 through 10
are blue.

Suppose we induce the relation a ~ b whenever brick number a has the same colour as brick number b. The ~ is clearly an equivalence
relation and the bricks are partitioned according to colour. In this partition we have 3 classes (colours): bricks with numbers in {1,2,3}
belong to the “red” class; bricks with numbers in {4,5,6,7} belong to the “white” class; and bricks with numbers in {8,9,10} belong to the
“blue” class.

Suppose that instead of grouping the bricks by colour we decided to group the bricks by the remainder given by the number of the brick
upon division by 4, thus a ~ b if a and b leave the same remainder upon division by 4. Clearly =~ is also an equivalence relation. In this
case bricks with numbers in {4,8} belong to the “0” class; bricks with numbers in {1,5,9} belong to the “1” class; bricks with numbers in
{2,4,10} belong to the “2” class; and bricks with numbers in {3,7} belong to the “3” class.

Notice on the same set we constructed two different partitions, and that classes need not have the same number of elements.

167 Theorem Let.” # & be a set. Any equivalence relation on .% induces a partition of .. Conversely, given a partition of .# into disjoint,
non-empty subsets, we can define an equivalence relation on . whose equivalence classes are precisely these subsets.

Proof: By Lemma 166, if ~ is an equivalence relation on . then

& = Jld,

acs

and [a)N[b] = @ if a = b. This proves the first half of the theorem.

Conversely, let
S = Usa, SaNSp =2 if a# B,

a

be a partition of .. We define the relation =~ on . by letting a =~ b if and only if they belong to the same S, . Since the Sy, are
mutually disjoint, it is clear that = is an equivalence relation on . and that for a € S¢, we have [a] = S¢. O

4.2 Functions

168 Definition By a function f: Dom (f) — Target (f) we mean the collection of the following ingredients:

O a name for the function. Usually we use the letter f.

@ aset of inputs called the domain of the function. The domain of f is denoted by Dom (f).

© an input parameter , also called independent variable or dummy variable. We usually denote a typical input by the letter x.
O aset of possible outputs of the function, called the targer set of the function. The target set of f is denoted by Target (f).
(5]

an assignment rule or formula, assigning to every input a unique output. This assignment rule for f is usually denoted by x — f(x).
The output of x under f is also referred to as the image of x under f,and is denoted by f(x).

target set

Figure 4.1: The main ingredients of a function.
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The notation’
Dom (f) — Target(f)

x = fx)
read “the function f, with domain Dom (f), target set Target ( /), and assignment rule f mapping x to f(x)” conveys all the above ingredients.
See figure 4.1.

f:

169 Definition The image Im (f) of a function f is its set of actual outputs. In other words,

Im (f) = {f(a) : a € Dom(f)}.

Observe that we always have Im (f) C Target (f).

It must be emphasised that the uniqueness of the image of an element of the domain is crucial. For example, the diagram in figure 4.2 does not
represent a function. The element 1 in the domain is assigned to more than one element of the target set. Also important in the definition of
a function is the fact that all the elements of the domain must be operated on. For example, the diagram in 4.3 does not represent a function.
The element 3 in the domain is not assigned to any element of the target set.

—_
SN2 I

Figure 4.2: Not a function. Figure 4.3: Not a function.

170 Example Consider the sets A = {1,2,3}, B={1,4,9}, and the rule f given by f(x) = x?, which means that f takes an input and squares
it. Figures 4.4 through 4.5 give three ways of representing the function f : A — B.

’ (1 2 3> é i
X — X
Figure 4.4: Example 170. Figure 4.5: Example 170.

Figure 4.6: Example 170.

171 Example Find all functions with domain {a,b} and target set {c,d}.

Solution: There are 22 = 4 such functions, namely:
® 1) given by f(a) = f1(b) = c. Observe that Im (1) = {c}.
0 f, given by f>(a) = f(b) =d. Observe that Im(f,) = {d}.
® f; given by f3(a) = ¢, f3(b) = d. Observe that Im (f3) = {c,d}.

I'Notice the difference in the arrows. The straight arrow — is used to mean that a certain set is associated with another set, whereas the arrow — (read
“maps to”) is used to denote that an input becomes a certain output.
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O f, given by fi(a) =d, f4(b) = c. Observe that Im (f4) = {c,d}.

172 Definition A function is injective or one-to-one whenever two different values of its domain generate two different values in its image.
A function is surjective or onto if every element of its target set is hit, that is, the target set is the same as the image of the function. A function

is bijective if it is both injective and surjective.

a 1 4
1 2 20 2
2 8 3
3 4
Figure 4.8: Not an injec-
Figure 4.7: An injection. tion

1-

2-

Figure 4.9: A surjection

Figure 4.10: Not a surjec-
tion

173 Example The function o in the diagram 4.7 is an injective function. The function represented by the diagram 4.8, however is not
injective, since §(3) = B(1) =4, but 3 # 1. The function y represented by diagram 4.9 is surjective. The function 6 represented by diagram
4.10 is not surjective since 8 is part of the target set but not of the image of the function.

174 Theorem Let f : A — B be a function, and let A and B be finite. If f is injective, then card(A) < card(B). If f is surjective then

card (B) < card (A). If f is bijective, then card (A) = card (B).

Proof: Putn=card(A), A= {x1,x2,...,X%,} and m = card (B), B= {y1,y2,...

7}’m}

If f were injective then f(x1), f(x2),...,f(x,) are all distinct, and among the y;. Hence n < m.

If f were surjective then each yy is hit, and for each, there is an x; with f(x;) = yy.. Thus there are at least m different images,

andson>m.d

175 Definition A permutation is a function from a finite set to itself which reorders the elements of the set.

= By necessity then, permutations are bijective.

176 Example The following are permutations of {a,b,c}:

a b ¢ a
f11<a b C> fzi(b
a b ¢ a
f3:<a a c> f4:(b

177 Theorem Let A, B be finite sets with card (A) = n and card (B) = m. Then

The following are not permutations of {a,b,c}:

o the number of functions from A to B is m".

e if n < m, the number of injective functions from A to B is m(m —1)(m—2)---(m —n+1). If n > m there are no injective functions

from A to B.

Proof: Each of the n elements of A must be assigned an element of B, and hence there are m-m---m = m" possibilities, and

n factors

thus m" functions If a function from A to B is injective then we must have n < m in view of Theorem 174. If to different inputs
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we must assign different outputs then to the first element of A we may assign any of the m elements of B, to the second any of
the m — 1 remaining ones, to the third any of the m — 2 remaining ones, etc., and so we have m(m —1)---(m —n+ 1) injective
functions. d

178 Example Let A = {a,b,c} and B = {1,2,3,4}. Then according to Theorem 177, there are 4> = 64 functions from A to B and of these,
4.3.2 = 24 are injective. Similarly, there are 3* = 81 functions from B to A, and none are injective.

179 Example Find the number of surjections from A = {a,b,c¢,d} to B = {1,2,3}.

Solution: The trick here is that we know how to count the number of functions from one finite set to the other (Theorem 177). What we do
is over count the number of functions, and then sieve out those which are not surjective by means of Inclusion-Exclusion. By Theorem 177,
there are 3* = 81 functions from A to B. There are G) 2% = 48 functions from A to B that miss one element from B. There are (;) 14=3

functions from A to B that miss two elements from B. There are ((3)) 0* = 4 functions from A to B that miss three elements from B. By
Inclusion-Exclusion there are

81—-48+3 =36

surjective functions from A to B.

In analogy to example 179, we may prove the following theorem, which complements Theorem 177 by finding the number of surjections
from one set to another set.

180 Theorem Let A and B be two finite sets with card (A) = n and card (B) = m. If n < m then there are no surjections from A to B. If n > m
then the number of surjective functions from A to B is

" — (T) (m—1)"+ @) (m—2)"~ @1) (m—=3)" 4o (=)™ <mn_1 1) W

43



Chapter

Number Theory

5.1 Division Algorithm

181 Definition If a # 0,b are integers, we say that a divides b if there is an integer ¢ such that ac = b. We write this as a|b.

If a does not divide b we write a }b.
182 Example Since 20 =4 -5 we have 4|20. Also —4/|20 since 20 = (—4)(-5).

183 Theorem Let a,b,c be integers.
O If a|b then a|kb for any k € Z.
If a|b and b|a, then a = +b.
If a|b and b|c then alc.
If ¢ divides @ and b then ¢ divides any linear combination of @ and b. That is, if a, b, c,m,n are integers with c|a, c|b, then ¢|(am + nb).
For any k € Z\ {0}, alb <= kalkb.
If alb and b # 0 then 1 < |a| < |b)|.

®@ © 06 ®© ®

Proof: We prove the assertions in the given order.

O There is u € Z such that au = b. Then a(uk) = bk and so a|bk.

® Observe that by definition, neither a # 0 nor b # 0 if a|lb and bla. There exist integers u,u’ with au = b and bu' = a.
Hence auu' = bu' = a, and so uu’ = 1. Since u,u’ are integers, then u = x1,u’ = F1. Hence a = £b.

© There are integers u,v with au = b,bv = c. Hence auv = ¢, and so alc.

@ There are integers s,t with sc = a,tc = b. Thus
am+nb = c(sm+1tn),

giving c|(am+bn).

@ There exist an integer u with au = b. Then (ak)u = kb, and so alb = kalkb. Since k # 0 we may cancel out the k’s and
hence (ak)u = kb = au=b = alb, proving the converse.

@ Since b # 0 there exists an integer u # 0 with au = b. So |u| > 1 and thus |a|-1 < |a| - |u| = |au| = |b|. |a| > 1 trivially.

Q

184 Theorem (Division Algorithm) Let n > 0 be an integer. Then for any integer a there exist unique integers g (called the quotient) and r
(called the remainder) such thata = gn+r and 0 <r < q.

Proof: In the proof of this theorem, we use the following property of the integers, called the well-ordering principle: any
non-empty set of non-negative integers has a smallest element.
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Consider the set S={a—bn:b € Z and a > bn}. Then S is a collection of nonnegative integers and S # @ as ta—0-n€ S
and this is non-negative for one choice of sign. By the Well-Ordering Principle, S has a least element, say r. Now, there must
be some q € Z such that r = a — qn since r € S. By construction, r > 0. Let us prove that r < n. For assume that r > n. Then
r>r—n=a—gn—n=a—(q+1)n >0, since r —n > 0. But then a— (q+ 1)n € S and a— (q+ 1)n < r which contradicts
the fact that r is the smallest member of S. Thus we must have 0 < r < n. To prove that r and q are unique, assume that
gintri=a=qun+ry,0<r; <n0<ry, <n.Thenr,—ry =n(q) —qz), that is, n divides (r, —r1). But |r — r| < n, whence
ro = ry. From this it also follows that g1 = q». This completes the proof. 1

185 Example If n =5 the Division Algorithm says that we can arrange all the integers in five columns as follows:

-10 -9 -8 -7 -6
-5 -4 -3 -2 -1
0 1 2 3 4

5 6 7 8 9

The arrangement above shews that any integer comes in one of 5 flavours: those leaving remainder O upon division by 5, those leaving
remainder 1 upon division by 5, etc. We let

52=1{...,—15,—10,-5,0,5,10,15,...} =0,

5Z2+1={...,—14,-9,-4,1,6,11,16,...} =1,
52+2={...,—13,-8,-3,2,7,12,17,...} =2,
52+3={...,—12,-7,-2,3,8,13,18,...} =3,
57Z4+4=1{..,-11,-6,—1,4,9,14,19,...} =4,

and

Zs={0,1,2,3,4}.
186 Example Shew that n> + 23 is divisible by 24 for infinitely many values of 7.

Solution: Observe that n® +23 = n> — 1424 = (n—1)(n+ 1) 4 24. Therefore the families of integers n = 24m =+ 1,m = 0,%1,4£2,£3,...
produce infinitely many values such that n® + 23 is divisible by 24.

187 Example Shew that the square of any prime greater than 3 leaves remainder 1 upon division by 12.

Solution: If p > 3 is prime, then p is of one of the forms 6k + 1.

Now,
(6k+£1)% = 12(3k> £k) +1,

proving the assertion.

188 Example Prove that if p is a prime, then one of 8p — 1 and 8p + 1 is a prime and the other is composite.

Solution: If p =3, 8p —1 =23 and 8p + 1 = 25, then the assertion is true for p = 3. If p > 3, then either p =3k+1 or p =3k +2. If
p=3k+1, 8p—1=24k—7 and 8p+ 1 = 24k — 6, which is divisible by 6 and hence not prime. If p =3k+2, 8p—1 =24k — 15 isnot a
prime, .

189 Example (AHSME 1976) Let r be the common remainder when 1059, 1417 and 2312 are divided by d > 1. Find d —r.

Solution: By the division algorithm there are integers q1,q>,q3 with 1059 = dq; +r,1417 = dgy +r and 2312 = dg3 +r. Subtracting we get
1253 =d(g3 —q1),895 = d(q3 — ¢q2) and 358 = d(g» — q1). Notice that d is a common divisor of 1253,895, and 358. As 1253 =7-179,
895 =5-179, and 358 = 2-179, we see that 179 is the common divisor greater than 1 of all three quantities, and so d = 179. Since
1059 = 179¢q; +r, and 1059 = 5- 179+ 164, we deduce that r = 164. Finally,d —r = 15.

190 Example Shew that if 3n+ 1 is a square, then n+ 1 is the sum of three squares.
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Solution: Clearly 31+ 1 is not a multiple of 3, and so 3n4 1 = (3k = 1)2. Therefore

(3k+1)? -1

3 +1 =3 +2k+1 =k +k*+ (k+1)?

n+1=

as we wanted to shew.

5.2 Greatest Common Divisor

191 Definition Let a, b be integers with one of them different from 0. The greatest common divisor d of a, b, denoted by d = ged(a, b) is the
largest positive integer that divides both a and b.

192 Theorem (Bachet-Bezout Theorem) The greatest common divisor of any two integers a,b can be written as a linear combination of a
and b, i.e., there are integers x,y with
gcd(a,b) = ax+ by.

Proof: Ler A= {ax+by|lax+by > 0,x,y € Z}. Clearly one of +a,+b is in A, as both a,b are not zero. By the Well Ordering

Principle, A has a smallest element, say d. Therefore, there are xq,yo such that d = axo + byy. We prove that d = gcd(a,b). To

do this we prove that d divides a and b and that if t divides a and b, then t must also divide then d.

We first prove that d divides a. By the Division Algorithm, we can find integers q,r,0 <r < d such that a = dg+r. Then
r=a—dq=a(l—qgxyg)—byy.

Ifr >0, thenr € A is smaller than the smaller element of A, namely d, a contradiction. Thus r = 0. This entails dqg = a, i.e. d

divides a. We can similarly prove that d divides b.

Assume that t divides a and b. Then a = tm,b = tn for integers m,n. Hence d = axo + bxg = t(mxo + nyy), that is, t divides d.

The theorem is thus proved. d

Let a,b be positive integers. After using the Division Algorithm repeatedly, we find the sequence of equalities

a = bq+r, 0<r<b,
b = ngq+r 0<r3 <,
%) = r3q3+ry 0<ry<rs3,
. . 5.1
fn2 = Tn_iqu1+rm 0<ry<ry_y,
'n—1 = Tnqn-

The sequence of remainders will eventually reach a r,; which will be zero, since b,ry,r3,... is a monotonically decreasing sequence of
integers, and cannot contain more than b positive terms.
The Euclidean Algorithm rests on the fact, to be proved below, that gcd(a,b) = ged(b, ;) = ged(rp,r3) = -+ = ged(ry—1,7mm) = ra.

193 Theorem If r, is the last non-zero remainder found in the process of the Euclidean Algorithm, then

rn = ged(a,b).
Proof: From equations 5.1
rn = a=bq
r3 = b-ngq
r4 = Ip—Tr3g3
'n = Th—2—Tn-19n—1

Let r = ged(a,b). From the first equation, r|ry. From the second equation, r|r3. Upon iterating the process, we see that r|ry.

But starting at the last equation 5.1 and working up, we see that ry|ry_1,rn|rn—2,...rn|r2,ru|b,rula. Thus ry is a common
divisor of a and b and so r,| gcd(a,b). This gives the desired result. O

194 Example Write pseudocode describing the Euclidean Algorithm.
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Solution: Here is one iterative way of doing this.

(Algorithm 5.2.1: EUCLIDEANALGORITHM(x,Y)

ifx<O0
then x — —x

ify<o0
then y — —y

while y >0

r<«x mody
do { x—y
-

yer

195 Example Find gcd(23,29) by means of the Euclidean Algorithm.

Solution: We have

29 =1-23+6,

23=3-6+5,
6=1-5+1,
5=5-1.

The last non-zero remainder is 1, thus gcd(23,29) = 1.

An equation which requires integer solutions is called a diophantine equation. By the Bachet-Bezout Theorem 192, we see that the linear
diophantine equation
ax+by=c

has a solution in integers if and only if gcd(a,b)|c. The Euclidean Algorithm is an efficient means to find a solution to this equation.

196 Example Find integers x,y that satisfy the linear diophantine equation

23x+29y =1.

Solution: We work upwards, starting from the penultimate equality in the preceding problem:
1=6-1-5,
5=23-3.6,
6=29-1-23.

Hence,
1 = 6-1-5
= 6-—1-(23-3-6)
= 4.6-1-23
= 4(29-1-23)—1-23
= 4.29-5.23.

This solves the equation, withx = =5,y = 4.

197 Example Find integer solutions to
23x+29y =17.

Solution: From the preceding example, 23(—5) 4 29(4) = 1. Multiplying both sides of this equality by 7,
23(—35)+29(28) =7,

which solves the problem.

198 Example Find infinitely many integer solutions to
23x+29y = 1.

47



48 Chapter 5

Solution: By example 196, the pair xo = —5,y9 = 4 is a solution. We can find a family of solutions by letting

x=-5+29, y=4-23, t€Z.

199 Example Can you find integers X, y such that 3456x + 246y = 73?

Solution: No. (3456,246) =2 and 2 /73.

5.3 Non-decimal Scales

The fact that most people have ten fingers has fixed our scale of notation to the decimal. Given any positive integer » > 1, we can, however,
express any number x in base r.
If n is a positive integer, and r > 1 is an integer, then n has the base-r representation

n:ao-i-alr-i-azrz—i-~~-—§—akrk7 0<a <r—1,a #0, rk§n<rk+l.

We use the convention that we shall refer to a decimal number without referring to its base, and to a base-r number by using the subindex

200 Example Express the decimal number 5213 in base-seven.

Solution: Observe that 5213 < 7°. We thus want to find 0 < ay, ..., a4 < 6,a4 = 0 such that
5213 = a474 -i—a373 -i-a272 +ai7+agp.

Dividing by 7*, we obtain 2+ proper fraction = a4+ proper fraction. This means that a4 = 2. Thus 5213 =2-7* + a3 73 + a,7* +a17 +ag or
411 = 5213 = a3 7> 4+ ay 7> + a1 7+ ap. Dividing by 7> this last equality we obtain 1+ proper fraction = a3+ proper fraction, and so a3 = 1.
Continuing in this way we deduce that 5213 = 211257.

The method of successive divisions used in the preceding problem can be conveniently displayed as

715212 |5
7| 744 2
7 | 106 1
7115 1
712 2

The central column contains the successive quotients and the rightmost column contains the corresponding remainders. Reading from
the last remainder up, we recover 5213 = 211257.

201 Example Write 5627 in base-five.

Solution: 5627 =5 .72 4+6-7+2 = in decimal scale, so the problem reduces to convert 289 to base-five. Doing successive divisions,

51289 | 4
5| 57 2
5] 11 1
512 2

Thus 5627 = 289 = 2124s.

13
202 Example Express the fraction 16 in base-six.

Solution: Write

13 _a an as ag
16 6 +62+63+64+
Multiplying by 6, we obtain 4+ proper fraction = a;+ proper fraction, so a; = 4. Hence

B3 4 7 a

= + B0y
16 6 48 6 6 64
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Multiply by 62 we obtain 5+ proper fraction = a;+ proper fraction, and so a; = 5. Continuing in this fashion
3
—=—-+—=+—=+—=5=04513¢.

We may simplify this procedure of successive multiplications by recurring to the following display:

6|12 |4
6% |5
614 |1
613 |3

The third column contains the integral part of the products of the first column and the second column. Each term of the second column from

the second on is the fractional part of the product obtained in the preceding row. Thus 6- % —4= %, 6- % -5= %, etc..

203 Example Prove that 4.41, is a perfect square in any scale of notation.

Solution:

4 4 1\2
441, =4+ -4 =5 = (2+—)
r I r

204 Example (AIME 1986) The increasing sequence
1,3,4,9,10,12,13,...

consists of all those positive integers which are powers of 3 or sums of distinct powers or 3. Find the hundredth term of the sequence.

Solution: If the terms of the sequence are written in base-three, they comprise the positive integers which do not contain the digit 2. Thus the
terms of the sequence in ascending order are
153,103, 113,1003,1013, 1103, 1113,...

In the binary scale these numbers are, of course, the ascending natural numbers 1,2,3,4,.... Therefore to obtain the 100th term of the
sequence we write 100 in binary and then translate this into ternary: 100 = 1100100, and 11001003 = 3¢ +3° +32 = 981.

5.4 Congruences

205 Definition Let n > 0 be an integer. We say that “a is congruent to b modulo n” written a = b mod n if a and b leave the same remainder
upon division by 7.

206 Example
—8=6 mod7,

—8=13 mod7.

By the division algorithm any integer a can be written as a = gn+r with 0 < r < n. By letting g vary over the integers we obtain the
arithmetic progression
ooy =3n,r —2n,r —n,r,r+n,r+2n,r+3n,...,

and so all the numbers in this sequence are congruent to @ modulo 7.
207 Theorem Let n > 0 be an integer. Thena =b modn < n|(a—b).

Proof: Assume a # b, otherwise the result is clear. By the Euclidean Algorithm there are integers q| # qy such that a= qin+r
and b = qyn+r, as a and b leave the same remainder when divided by n. Thus a—b = qin— qan = (q1 — q2)n. This implies
that n|(a—D).
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Conversely if n|(a — b) then there is an integer t such that nt = a —b. Assume that a = min+r; and b = myn+ry with
0<ry,rp <n.Then

nt=a—b=(m—m)n+ri—ry = n(t—my+m)=r —ry = n|(r;—ra).

Since |r; —ry| < n we must have ry —ry =0 and so a and b leave the same remainder upon division by n. Q

We now provesome simple properties of congruences.

208 Theorem Leta,b,c,d,m € Z,k € witha=b mod m and c =d mod m. Then
1. a+c=b+d modm

a—c=b—d modm

ac=bd modm

a=b* modm

A

If f is a polynomial with integral coefficients then f(a) = f(b) mod m.

Proof: Asa=b modm and c =d modm, we can find ky,ky € Z with a =b+kym and ¢ = d + kym. Thus a+c =
btd+m(ky £ky) and ac = bd + m(kyb+ kid). These equalities give (1), (2) and (3). Property (4) follows by successive
application of (3), and (5) follows from (4). Q

Congruences mod 9 can sometimes be used to check multiplications. For example 875961 - 2753 # 2410520633. For if this were true
then

(8+74+54+9+64+1)2+7+5+3)=24+4+14+0+5+24+0+6+3+3 mod 9.
But this says that 0- 8 =8 mod 9, which is patently false.

209 Example Find the remainder when 6'9%7 is divided by 37.
Solution: 6> = —1 mod 37. Thus 6'%7 = 6.6!9%6 = 6(62)93 = 6(—1)%"° = —6 = 31 mod 37.
210 Example Prove that 7 divides 32"+! 427+ for all natural numbers n.

Solution: Observe that 32t! =3.9" =3.2" mod 7 and 2”72 = 42" mod 7. Hence
32402 =7.2"=0 mod 7,

for all natural numbers 7.

211 Example Prove that 7|(2222%%% 4 555522%2),

Solution: 2222 =3 mod 7,5555=4 mod 7 and 3° =5 mod 7. Now

22225555+55552222 = 35555+42222 = (35)1111 +(42)1111 E51111 _51111 =0 mod7.

212 Example Find the units digit of 77 .

Solution: We must find 77’ mod 10. Now, 72 = —1 mod 10, and so 7*=72.7=—-7=3mod 10 and 7* = (72)2 =1 mod 10. Also, 72=1
mod 4 and so 77 = (72)3 -7 =3 mod 4, which means that there is an integer ¢ such that 77 = 3 -+ 4¢. Upon assembling all this,

77 =7 = (74 7P =1.3=3 mod 10.

Thus the last digit is 3.

213 Example Prove that every year, including any leap year, has at least one Friday 13th.
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Solution: It is enough to prove that each year has a Sunday the 1st. Now, the first day of a month in each year falls in one of the following

days:

Month Day of the year mod 7
January 1 1
February 32 4
March 60 or 61 4or5
April 91 or 92 Oorl
May 121 or122 2o0r3
June 152 or 153 S5or6
July 182 or183 Oorl
August 213 or 214 3or4
September | 244 or 245 60r0
October 274 or 275 lor2
November | 305 or 306 4or5
December | 335 or 336 60r0

(The above table means that, depending on whether the year is a leap year or not, that March 1st is the 50th or 51st day of the year, etc.) Now,
each remainder class modulo 7 is represented in the third column, thus each year, whether leap or not, has at least one Sunday the 1st.

214 Example Find infinitely many integers n such that 2" 427 is divisible by 7.

Solution: Observe that 2! = 2722 =4,23=1,2=2,25=4,2°=1mod 7 and so 23 = 1 mod 3 for all positive integers k. Hence 23k 407 =
1+27 =0 mod 7 for all positive integers k. This produces the infinitely many values sought.

215 Example Prove that 2 —5,k =0,1,2,... never leaves remainder 1 when divided by 7.

Solution: 2! = 2,22 =4,23 = 1 mod 7, and this cycle of three repeats. Thus 2 — 5 can leave only remainders 3, 4, or 6 upon division by 7.

5.5 Divisibility Criteria

216 Theorem An integer n is divisible by 5 if and only if its last digitisaO ora 5.

Proof: We derive the result for n > 0, for if n < 0 we simply apply the result to —n > 0. Since 10 =0 mod 5 for integral

k> 1, we have

n=as10°+a; 110" '+ 44,104 a9 = a9

mod 5,

Thus divisibility of n by 5 depends on whether ay is divisible by 5, which happens only when ag =0 or ag = 5.1

217 Theorem Let k be a positive integer. An integer n is divisible by 2 if and only if the number formed by the last k digits of 7 is divisible

by 2.

Proof: [fn =0 there is nothing to prove. If we prove the result for n > 0 then we can deduce the result for n <0 by applying

itto —n=(—1)n > 0. So assume that n € Z, n > 0 and let its decimal expansion be

n=as10°+a, 110"+ 44,10+ ap,
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where 0 < a; <9, as # 0. Now, each of 10" =2!5' =0 mod 2’ for t > k. Hence
n = as10°+a; 1105 4+ a1 104ag
= @105 +ap 51052 4. +4;104a9 mod 2K,
so n is divisible by 2% if and only if the number formed by the last k digits of n is divisible by 2%. Q

218 Example The number 987654888 is divisible by 23 = 8 because the number formed by its last three digits, 888 is divisible by 8.

219 Example The number 191919191919193216 is divisible by 2* = 16 because the number formed by its last four digits, 3216 is divisible
by 16.

220 Example By what digits may one replace A so that the integer 231A2 be divisible by 4?

Solution: The number 231A2 is divisible by 4 if and only if A2 is divisible by 4. This happens when A =1 (A2 =12),A=3(A2=32),A=5
(A2=152),A=7(A2="72),and A =9 (A2 = 92). Thus the five numbers

23112,23132,2315223172,23192,

are all divisible by 4.
221 Example Determine digits a, b so that 235ab be divisible by 40.

Solution: 235ab will be divisible by 40 if and only if it is divisible by 8 and by 5. If 235ab is divisible by 8 then, a fortiori, it is even and
since we also require it to be divisible by 5 we must have b = 0. Thus we need a digit a so that 5a0 be divisible by 8. Since 0 < a <9, a quick
trial an error gives that the desired integers are

23500,23520,23540,23560,23580.

222 Theorem (Casting-out 9’s) An integer # is divisible by 9 if and only if the sum of its digits is divisible by 9.

Proof: Ifn =0 there is nothing to prove. If we prove the result for n > 0 then we can deduce the result for n < 0 by applying
itto —n = (—1)n > 0. So assume that n € Z, n > 0 and let its decimal expansion be

n=as10° +a, 110" 4+ - +a;10 + ay,

where 0 < a; <9, a; # 0. Observe that 10 =1 mod 9 and so 10’ =1' =1 mod 9. Now

ag10* +a,_ 1105~ + -+ +a; 10+ a

3
I

= as+---+a+ay mod9,
from where the result follows. 1
= Since 10 =1 mod 3 we can also deduce that integer n is divisible by 3 if and only if the sum of it digits is divisible by 3.
223 Example What values should the digit d take so that the number 32d5 be divisible by 9?
Solution: The number 3245 is divisible by 9 if and only 3+2+d +5 = d + 10 is divisible by 9. Now,

0<d<9 = 10<d+10<19.

The only number in the range 10 to 19 divisible by 9 is 18, thus d = 8. One can easily verify that 3285 is divisible by 9.

224 Example Is there a digit d so that 125d be divisible by 45?
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Solution: If 125d were divisible by 45, it must be divisible by 9 and by 5. If it were divisible by 5, thend =0 or d = 5. If d = 0, the digital
sum is 1 +2 4540 = 8, which is not divisible by 9. Similarly, if d = 5, the digital sum is 1 +2+5+5 = 13, which is neither divisible by 9.
So 125d is never divisible by 45.

225 Definition If the positive integer n has decimal expansion
n=a510° +a, 110" + - +a; 10+ a,

the alternating digital sum of n is
as—as_1+ag_p—as_3+---+ (_1)S7laO

226 Example The alternating digital sum of 135456 is

1-34+5-445-6=-2.
227 Theorem An integer n is divisible by 11 if and only if its alternating digital sum is divisible by 11.

Proof: We may assume that n > 0. Let
n=as10°+a, 110"+ 44,10+ ap,
where 0 < a; <9, ag # 0. Observe that 10 = —1 mod 11and so 10" = (—1) mod 11. Hence
n = agl0°+a,_ 11057+ +a; 1044
= ay(—1)+a, 1 (1) daso(—1)"2+--+—a;+ap mod 1l
and the result follows from this. Q

228 Example 912282219 has alternating digital sum 9—1+2—-2+4+8—-2+2—1+49 =24 and so 912282219 is not divisible by 11, whereas
8924310064539 has alternating digital sum 8 —94+2—-4+3—-1+0—-04+6—-44+4—3+9 =11, and so 8924310064539 is divisible by 11.

Homework

229 Problem Prove that there are infinitely many integers n such that 4n% + 1 is simultaneously divisible by 13 and 5.
230 Problem Find the least positive integer solution of the equation 436x — 393y = 5.

231 Problem Two rods of equal length are divided into 250 and 243 equal parts, respectively. If their ends be coincident, find the divisions
which are the nearest together.

232 Problem Prove that any integer n > 11 is the sum of two positive composite numbers.

233 Problem Let n > 1 be an integer.
1. Prove, using induction or otherwise, that if @ # 1 then

1—a"
l+ata*+--a" =

l1—a’

2. By making the substitution a = ’y-‘ prove that
oy = (X*y)(x'“l T +y"71).

3. Deduce that if x # y are integers then (x — y)|x" —y".

4. Shew that
2903" — 803" — 464" + 261"

is divisible by 1897 for all natural numbers n.
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5. Prove that if 2" — 1 is prime, then n must be prime.
6. Deduce that if x # y are integers, and n is odd, then (x+y)|x" +y".

7. Prove that if 2" 41 is prime, then n = 2% for some integer k.

234 Problem Use the preceding problem to find the prime factor p > 250000 of the integer

1002004008016032.

235 Problem Write an algorithm that finds integer solutions x,y to the equation
gcd(a,b) = ax+ by.

Assume that at least one of a or b is different from 0.

236 Problem Let A be a positive integer, and A’ be a number written with the aid of the same digits with are arranged in some other order.
Prove that if A+ A’ = 10'°, then A is divisible by 10.

237 Problem A grocer sells a 1-gallon container of milk for 79 cents (comment: those were the days!) and a half gallon container of milk
for 41 cents. At the end of the day he sold $63.58 worth of milk. How many 1 gallon and half gallon containers did he sell?

238 Problem Using congruences, find the last two digits of 3'%°. Hint: 3% =1 mod 100.

Answers

229 We have 4n% + 1 = 4n?> — 64 +65 = 4(n—4)(n+4) + 65 so it is enough to take n = 65k +4.

230 Using the Euclidean Algorithm,

436 = 1-393+43
393 = 9:43+6
43 = 7-6+1
Hence
1 = 43-7-6

= 43-7-(393—-9-43)

= —7-393+64-43

= —7-393464-(436—393)

= —71-393+64-436,
and so 5 = 320-436 —355-393. An infinite set of solutions can be achieved by putting x = 320 +393¢, y = 355 +436r.
231 Observe that ged(243,250) = 1, and so the divisions will be nearest together when they differ by the least amount, that is, we seek
solutions of 243x — 250y = £1. By using the Euclidean Algorithm we find 243107 —250- 104 = 1 and also 243 (250 — 107) — 250 - (243 —
104) = —1 and so the values of x are 107 and 143 and those of y are 104 and 139.
232 If n > 11 is even then n— 6 is even and at least 12 —4 = 8 and thus it is composite. Hence n = (n—6) + 6 is the sum of two even
composite numbers. If n > 11 is odd then n — 9 is even at least 13 —9 =4, and hence composite. Therefore n = (n—9) +9 of an even and an

odd composite number.

233 1. PutS=1+a+a*+---+a" . ThenaS=a+a®+ - +a" ' +d" Thus S—aS = (1+a+a’+---+a" )= (a+a®+ -+
"' +4d") =1—a", and from (1 —a)S = S —aS = 1 —a" we obtain the result.
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2. From

we obtain

(1-%) <1+§+<;ﬁ)2+..,+<;_c>"1> o (;_C>

and multiplying by y”" both sides gives the result.
3. This is immediate from the above result.

4. By the preceding part, 2903" — 803" is divisible by 2903 —803 = 2100 =7-300 =, and 261" — 464" is divisible by 261 —464 = —203 =
7-(—29). Thus the expression 2903" — 803" — 464" + 261" is divisible by 7. Also, 2903" — 464" is divisible by 2903 —464 = 9-271
and 261" — 803" is divisible by —542 = (—2)271. Thus the expression is also divisible by 271. Since 7 and 271 have no prime factors
in common, we can conclude that the expression is divisible by 7-271 = 1897.

5. We have
2 —1=2"—1= (2= 1)(2) ) 4+ (29 ).
Sincea > 1,2 —1> 1. Since b > 1,
2901 4 (2902 4. (29 £ 1) >29 41> 1.

We have decomposed a prime number (the left hand side) into the product of two factors, each greater than 1, a contradiction. Thus n
must be a prime. Primes of this form are called Mersenne primes.

6. For every n we have that x — y divides x" — y". By changing y into —y we deduce that x — (—y) divides x" — (—y)", that is x + y divides
X" — (—y)". If nis odd then —(—y)" = y", which gives the result.

7. We have
21 =22 1= (22 () - 2 (22 ).

Clearly, 22 +1 > 1. Also if m >3
Wym—1_ (n26\m=2 | _ (5251 2\2 5261
2%) %)y 2+ O 1> -2 1>,

and so, we have produced two factors each greater than 1 for the prime 2" 4 1, which is nonsense. Primes of this form are called
Fermat primes.

234 Ifa=10%b =2 then

a® —po

1002004008016032 = a° +a*b + @b + b +ab* +b° = o
P

This last expression factorises as

= (a+b)(a*+ab+b*)(a* —ab+b*)

= 1002-1002004 - 998004
= 4-4-1002-250501 -k,

where k < 250000. Therefore p = 250501.

235 Here a possible approach. I have put semicolons instead of writing the algorithm strictly vertically in order to save space.
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(Algorithm 5.5.1: LINEARDIOPHANTINE(a, b) )
me—a, n—b; p—1, g—0; r—0; s 1;
while =((m =0)V (n=0))
(
Vifm>n
i
{ then {m<—m—n;p<—p—r;q<—q—s;
1
1 else {n%nfm;rerfp;sH\squ;
ifm=0
then {k<—n;x<—r;y<—s;
else {ka;)m—p;)u—q;
. J

236 Clearly A and A’ must have ten digits. Let A = ajoag ...a; be the consecutive digits of A and A’ = d/yaj...a}. Now, A+ A" = 1010 if
and only if there is a j,0 < j <9 for which a; +d} =ay+dy =--- = aj—i-a.’i =0,a41 —Q—a’jH =10,aj42 —Q—a’Hz =aj43 +a’j+3 =... =

ap + a’10 =9. Notice that j = 0 implies that there are no sums of the forma . + a

f -k =2, and j =9 implies that there are no sums of the

form q; +a;71 <[ < j. On adding all these sums, we gather
ay+d tay+dy+--+ap+dy=10+9(9—j).

Since the @, are a permutation of the ay, we see that the sinistral side of the above equality is the even number 2(a; +a; + -+ - +ayg). This
implies that j must be odd. But this implies that a; + a’l =0, which gives the result.

237 We want non-negative integer solutions to the equation
719x+ .41y = 63.58 = T9x+41y = 6358.
Using the Euclidean Algorithm we find, successively
79=1-41+438; 41=1-38+43; 38=3-12+2; 3=1-2+1.
Hence
1 = 3-2

= 3—-(38-3-12)

= —-3843-13

= —38+(41-38)-13

= 38-(—14)+41-13

= (79-41)(—14)+41-13

79(—14) +41(27)

A solution to 79x+41y = 1 is thus (x,y) = (—14,27). Thus 79(—89012) +41(171666) = 6358 and the parametrisation 79(—89012+41¢) +
41(171666 — 79¢) = 1 provides infinitely many solutions. We need non-negative solutions so we need, simultaneously

—89012+4+41t >0 = ¢t >2172 A 171666 —79t >0 = t <2172.
Thus taking t = 2172 we obtain x = —89012+41(2172) =40 and y = 171666 — 79(2172) = 78, and indeed .79(40) + .41(78) = 63.58.
238 Since 3'00 = (340)2320 =320 mod 100, we only need to concern ourselves with the last quantity. Now (all congruences mod 100)
3t =81 = 3¥=81°=61 = 3°=617=21.

‘We deduce, as 20 = 16 + 4, that
320 =3163% = (21)(81) =1 mod 100,
and the last two digits are 01.

56



Chapter

Enumeration

6.1 The Multiplication and Sum Rules

We begin our study of combinatorial methods with the following two fundamental principles.

239 Definition (Cardinality of a Set) If S is a set, then its cardinality is the number of elements it has. We denote the cardinality of S by
card (S).

240 Rule (Sum Rule: Disjunctive Form) Let E|,E,,. .., E}, be pairwise finite disjoint sets. Then

card(E{UEy U---UEy) = card (Ey) +card (E) + - - - +card (Ey) .

241 Rule (Product Rule) Let Ey,E»,...,E;, be finite sets. Then

card(Ey X Ey X -+ X Ey) = card (E}) - card (E3) - - - card (Ey,) .
242 Example How many ordered pairs of integers (x,y) are there such that 0 < |xy| < 5?

Solution: Put Ex = {(x,y) € Z? : |xy| = k} for k = 1,...,5. Then the desired number is
card (E) +card (Ep) + - - - 4 card (Es) .
Then
Er = {(=1,-1),(=11,(1,-1),01,1)}
Ey = {(=2,-1),(=2,1),(=1,-2),(=1,2),(1,-2),(1,2),(2,-1),(2,1)}
E3 = {(=3,-1),(=3,1),(=1,-3),(=1,3),(1,-3),(1,3),(3,-1), (3, 1)}
Ey = {(=4-1),(=41),(=2,-2),(=2,2),(=1,-4),(=1,4),(1,-4),(1,4),(2,-2),(2,2), (4, -1), (4, 1)}
Es = {(=5-1),(=5,1),(=1,=5),(=1,5),(1,=5),(1,5),(5,=1),(5,1)}
The desired number is therefore 4 +8 48 41248 = 40.
243 Example The positive divisors of 400 are written in increasing order
1,2,4,5,8,...,200,400.

How many integers are there in this sequence. How many of the divisors of 400 are perfect squares?

Solution: Since 400 = 24.52, any positive divisor of 400 has the form 245 where 0 < a < 4 and 0 < b < 2. Thus there are 5 choices for a
and 3 choices for b for a total of 5-3 = 15 positive divisors.
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To be a perfect square, a positive divisor of 400 must be of the form 2¢5f with a € {0,2,4} and B € {0,2}. Thus there are 3-2 = 6
divisors of 400 which are also perfect squares.

By arguing as in example 243, we obtain the following theorem.

244 Theorem Let the positive integer n have the prime factorisation

ar a2

n=py'py s

where the p; are different primes, and the a; are integers > 1. If d(n) denotes the number of positive divisors of n, then

d(n) = (a1 +1)(az+ 1) (ax+1).

245 Example (AHSME 1977) How many paths consisting of a sequence of horizontal and/or vertical line segments, each segment connecting
a pair of adjacent letters in figure 6.1 spell CONTEST?

C C

c 0O C cC O

¢cC ON O C C O N

¢C ONT N OC C ONT

¢C O NTET N OC C O NT E

¢c ONTE S ET N OC ¢C O NTE S

¢c oOoONTE ST STEN OC ¢C ONTE ST
Figure 6.1: Problem 245. Figure 6.2: Problem 245.

Solution: Split the diagram, as in figure 6.2. Since every required path must use the bottom right 7', we count paths starting from this T’
and reaching up to a C. Since there are six more rows that we can travel to, and since at each stage we can go either up or left, we have
20 = 64 paths. The other half of the figure will provide 64 more paths. Since the middle column is shared by both halves, we have a total of
64+ 64 — 1 = 127 paths.

246 Example The integers from 1 to 1000 are written in succession. Find the sum of all the digits.

Solution: When writing the integers from 000 to 999 (with three digits), 3 x 1000 = 3000 digits are used. Each of the 10 digits is used an
equal number of times, so each digit is used 300 times. The the sum of the digits in the interval 000 to 999 is thus

(O+1+42+43+4+5+6+7+8+9)(300) = 13500.

Therefore, the sum of the digits when writing the integers from 1 to 1000 is 13500+ 1 = 13501.

Aliter: Pair up the integers from 0 to 999 as
(0,999), (1,998), (2,997), (3,996), ...,(499,500).
Each pair has sum of digits 27 and there are 500 such pairs. Adding 1 for the sum of digits of 1000, the required total is

27-5004-1 = 13501.
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247 Example The strictly positive integers are written in succession
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,. ..

Which digit occupies the 3000-th position?
Solution: Upon using

9:-1=9 1-digit integers,
90-2 =180 2-digit integers,
900-3 =2700  3-digit integers,
a total of 94 180 + 2700 = 2889 digits have been used, so the 3000-th digit must belong to a 4-digit integer. There remains to use

3000 —2889 = 111 digits, and 111 =4-27+ 3, so the 3000-th digit is the third digit of the 28-th 4-digit integer, that is, the third digit of
4027, namely 2.

6.2 Combinatorial Methods

Most counting problems we will be dealing with can be classified into one of four categories. We explain such categories by means of an
example.

248 Example Consider the set {a,b,c,d}. Suppose we “select” two letters from these four. Depending on our interpretation, we may obtain
the following answers.

© Permutations with repetitions. The order of listing the letters is important, and repetition is allowed. In this case there are 4-4 = 16
possible selections:

aa | ab | ac | ad

ba | bb | bc | bd

ca |cb |cc|cd

da | db | dc | dd

@ Permutations without repetitions. The order of listing the letters is important, and repetition is not allowed. In this case there are
4.3 = 12 possible selections:

ab | ac | ad

ba bc | bd
ca | cb cd
da | db | dc

© Combinations with repetitions. The order of listing the letters is not important, and repetition is allowed. In this case there are

4.3
- +4 = 10 possible selections:

aa | ab | ac | ad

bb | be | bd
cc | cd
dd
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@ Combinations without repetitions. The order of listing the letters is not important, and repetition is not allowed. In this case there

4.3
are - = 6 possible selections:

ab | ac | ad

bc | bd

cd

We will now consider some examples of each situation.

6.2.1 Permutations without Repetitions

249 Definition We define the symbol ! (factorial), as follows: 0! = 1, and for integer n > 1,

n'=1-2-3.---n.
n! is read n factorial.
250 Example We have
I = 1,
20 = 1-2=2,
3 = 1:2.3=6,
4! = 1.2.3-4=24,
50 = 1:2-3-4-5=120.

251 Example Write a code fragment to compute n!.

Solution: The following is an iterative way of solving this problem.

(‘Algorithm 6.2.1: FACTORIAL(n)
comment: returns n!

m«— 1

while n > 1

(

{'mHn*m

kn<—n—1

return (m)

252 Definition Let x;,x;,...,x, be n distinct objects. A permutation of these objects is simply a rearrangement of them.
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253 Example There are 24 permutations of the letters in MAT H, namely

MATH MAHT MTAH MTHA MHTA MHAT
AMTH AMHT ATMH ATHM AHTM AHMT
TAMH TAHM TMAH TMHA THMA THAM

HATM HAMT HTAM HTMA HMTA HMAT

254 Theorem Let xy,xy,..., xp, be n distinct objects. Then there are n! permutations of them.

Proof: The first position can be chosen in n ways, the second object in n— 1 ways, the third in n— 2, etc. This gives
nn—1)(n=2)---2-1=nl.

Q

255 Example Write a code fragment that prints all n! of the set {1,2,...,n}.

Solution: The following programme prints them in lexicographical order. We use examples 13 and 23.

(Algorithm 6.2.2: PERMUTATIONS(n) A

k—n—1

while X[k] > X[k — 1]

{k<—k—1

t—k+1

while ((r < n) and (X[r+ 1] > X[k]))

fiore

comment: now X[k+1]> ... > X[1] > X[k > X[t+1] > ... > X[n]
Swap(X [k], X[t])

comment: now X[k+1] > ... > X[n]

ReverseArray(X[k+1],...,X[n])

256 Example A bookshelf contains 5 German books, 7 Spanish books and 8 French books. Each book is different from one another.

© How many different arrangements can be done of these ©® How many different arrangements can be done of these books
books? if all the French books must be next to each other?
® How many different arrangements can be done of these books ® How many different arrangements can be done of these books
if books of each language must be next to each other? if no two French books must be next to each other?
Solution:
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© We are permuting 5+ 7+ 8 = 20 objects. Thus the number of

]

arrangements sought is 20! = 2432902008176640000.

“Glue” the books by language, this will assure that books of
the same language are together. We permute the 3 languages
in 3! ways. We permute the German books in 5! ways, the
Spanish books in 7! ways and the French books in 8! ways.

Hence the total number of ways is 3!5!7!8! = 146313216000.

Align the German books and the Spanish books first. Putting
these 5+ 7 = 12 books creates 12+ 1 = 13 spaces (we count

(13)8!12! =251073478656000.

Align the German books and the Spanish books first. Putting
these 5+ 7 = 12 books creates 12+ 1 = 13 spaces (we count
the space before the first book, the spaces between books and
the space after the last book). To assure that no two French
books are next to each other, we put them into these spaces.
The first French book can be put into any of 13 spaces, the
second into any of 12, etc., the eighth French book can be put

the space before the first book, the spaces between books and
the space after the last book). To assure that all the French
books are next each other, we “glue” them together and put
them in one of these spaces. Now, the French books can be
permuted in 8! ways and the non-French books can be
permuted in 12! ways. Thus the total number of permutations

into any 6 spaces. Now, the non-French books can be
permuted in 12! ways. Thus the total number of permutations
is

(13)(12)(11)(10)(9) (8)(7)(6) 12,
which is 24856274386944000.

257 Example Determine how many 3-digit integers written in decimal notation do not have a 0 in their decimal expansion. Also, find the
sum of all these 3-digit numbers.

Solution: There are 9-9-9 = 729 3-digit integers not possessing a 0 in their decimal expansion. If 100x 4 10y + z is such an integer, then
given for every fixed choice of a variable, there are 9-9 = 81 choices of the other two variables. Hence the required sum is

81(14+2+-+9)100+81(1+24-+9)10+81(1 +2+-+9)1 = 404595.

258 Example Determine how many 3-digit integers written in decimal notation possess at least one 0 in their decimal expansion. What is
the sum of all these integers.

Solution: Using example 257, there are 900 — 729 = 171 such integers. The sum of all the three digit integers is
100+ 101 +-- - +998 +-999.

To obtain this sum, observe that there are 900 terms, and that you obtain the same sum adding backwards as forwards:

S = 100 + 101 + - + 999
S = 999 + 998 + - + 100
2§ = 1099 + 1099 + -~ + 1099
= 900(1099),
900(1099
giving § = % = 494550. The required sum is 494550 — 404595 = 89955.

6.2.2 Permutations with Repetitions
‘We now consider permutations with repeated objects.
259 Example In how many ways may the letters of the word

MASSACHUSETTS

be permuted?

Solution: We put subscripts on the repeats forming

MA18515A,CHUSZET T,84.
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There are now 13 distinguishable objects, which can be permuted in 13! different ways by Theorem 254. For each of these 13! permutations,
A1Aj can be permuted in 2! ways, S1525354 can be permuted in 4! ways, and 777> can be permuted in 2! ways. Thus the over count 13! is

corrected by the total actual count

13!
——— = 64864800.
214121

A reasoning analogous to the one of example 259, we may prove

260 Theorem Let there be k types of objects: n; of type 1; ny of type 2; etc. Then the number of ways in which these n; +ny +--- +ny,
objects can be rearranged is
(ni4+ny 4+ +m)!
mlng!-om!

261 Example In how many ways may we permute the letters of the word MASSACHUSETT S in such a way that MASS is always together,
in this order?

Solution: The particle MASS can be considered as one block and the 9 letters A,C, H, U, S, E, T, T,S. InA,C,H,U, S, E, T, T, S there are
four S’s and two 7"’s and so the total number of permutations sought is

10!

262 Example In how many ways may we write the number 9 as the sum of three positive integer summands? Here order counts, so, for
example, 14741 is to be regarded different from 741+ 1.

Solution: We first look for answers with
a+b+c=91<a<b<c<7

and we find the permutations of each triplet. We have

(a,b,c) | Number of permutations
3!
(1,1,7) ol =3
(1,2,6) | 31=6
(1,3,5) | 31=6
3!
(1,4,4) | 5 =3
3!
(2.2,5) | 5 =3
(2,3,4) | 31=6
3!
(3.3.3) | 5 =1

Thus the number desired is
3464+6+3+3+6+1=28.

263 Example In how many ways can the letters of the word MURMUR be arranged without letting two letters which are alike come
together?

Solution: If we started with, say , MU then the R could be arranged as follows:

M|U|R R )
M|U|R R |
M| U R R
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In the first case there are 2! = 2 of putting the remaining M and U, in the second there are 2! = 2 and in the third there is only 1!. Thus
starting the word with MU gives 242+ 1 = 5 possible arrangements. In the general case, we can choose the first letter of the word in 3
ways, and the second in 2 ways. Thus the number of ways sought is 3-2-5 = 30.

264 Example In how many ways can the letters of the word AFFECTION be arranged, keeping the vowels in their natural order and not
letting the two F’s come together?

9!
Solution: There are 2 ways of permuting the letters of AFFECTION. The 4 vowels can be permuted in 4! ways, and in only one of these

9!
will they be in their natural order. Thus there are 1l ways of permuting the letters of AFFECTION in which their vowels keep their
natural order. o

Now, put the 7 letters of AFFECTION which are not the two F’s. This creates 8 spaces in between them where we put the two F’s. This
8.7!
means that there are 8- 7! permutations of AFFECTION that keep the two F’s together. Hence there are e permutations of

AFFECTION where the vowels occur in their natural order.

In conclusion, the number of permutations sought is

2040 41 4

9! 8~7!78!(9 )78-7-6~5~4!7
)

£ = 5880
41 2

6.2.3 Combinations without Repetitions

265 Definition Let 1,k be non-negative integers with 0 < k < n. The symbol <Z> (read “n choose k”) is defined and denoted by

<n>_ n! _n-(n—1)-(n—=2)---(n—k+1)
k) kK(n—k)! 1-2-3-- -k :

= Observe that in the last fraction, there are k factors in both the numerator and denominator. Also, observe the boundary

conditions (8) _ (D o <r11> _ (nﬁ 1) .

266 Example We have

6 = 8Bi=20

(4) = 4t=ss,

(7) = Bt =19,
(o) = 110,

() =1

= Since n— (n—k) = k, we have for integer n,k, 0 < k < n, the symmetry identity

<Z> B k!(nn—!k)! B (n—k)!(nn—! (n—k)! <nfk> '

This can be interpreted as follows: if there are n different tickets in a hat, choosing k of them out of the hat is the same as
choosing n— k of them to remain in the hat.

267 Example
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268 Definition Let there be n distinguishable objects. A k-combination is a selection of k, (0 < k < n) objects from the n made without
regards to order.

269 Example The 2-combinations from the list {X,Y,Z, W} are

XY, XZ XW.YZ,YW,WZ.

270 Example The 3-combinations from the list {X,Y,Z, W} are

XYZ XYW XZW . YWZ.
271 Theorem Let there be n distinguishable objects, and let k, 0 < k < n. Then the numbers of k-combinations of these n objects is (Z) .

Proof: Pick any of the k objects. They can be ordered in n(n—1)(n—2)--- (n—k+ 1), since there are n ways of choosing the
first, n — 1 ways of choosing the second, etc. This particular choice of k objects can be permuted in k! ways. Hence the total

number of k-combinations is
nn—1)(n—2)---(n—k+1) (n)
k! - \k/)’

Q

10
272 Example From a group of 10 people, we may choose a committee of 4 in ( 4 ) =210 ways.

273 Example Three different integers are drawn from the set {1,2,...,20}. In how many ways may they be drawn so that their sum is
divisible by 3?

Solution: In {1,2,...,20} there are

6  numbers leaving remainder 0
7  numbers leaving remainder 1
7  numbers leaving remainder 2
The sum of three numbers will be divisible by 3 when (a) the three numbers are divisible by 3; (b) one of the numbers is divisible by 3, one

leaves remainder 1 and the third leaves remainder 2 upon division by 3; (c) all three leave remainder 1 upon division by 3; (d) all three leave
remainder 2 upon division by 3. Hence the number of ways is

)+ () )+ () -

Figure 6.3: Example 274. Figure 6.4: Example 275.
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274 Example To count the number of shortest routes from A to B in figure 6.3 observe that any shortest path must consist of 6 horizontal
moves and 3 vertical ones for a total of 6+ 3 = 9 moves. Of these 9 moves once we choose the 6 horizontal ones the 3 vertical ones are
determined. Thus there are (2) = 84 paths.

275 Example To count the number of shortest routes from A to B in figure 6.4 that pass through point O we count the number of paths from
A to O (of which there are (;) = 20) and the number of paths from O to B (of which there are (g) =4). Thus the desired number of paths is

(3) (3) = (20)(4) = 80.

6.24 Combinations with Repetitions
276 Theorem (De Moivre) Let n be a positive integer. The number of positive integer solutions to

Xi+x2+--+x=n

(1)

is

Proof: Write n as
n=1+1+--+1+1,

where there are n 1s and n— 1 +s. To decompose n in r summands we only need to choose r — 1 pluses from the n— 1, which
proves the theorem. 1

277 Example In how many ways may we write the number 9 as the sum of three positive integer summands? Here order counts, so, for
example, 14741 is to be regarded different from 7414 1.

Solution: Notice that this is example 262. We are seeking integral solutions to

a+b+c=9, a>0,b>0,c>0.

Go1)=()==

278 Example In how many ways can 100 be written as the sum of four positive integer summands?

By Theorem 276 this is

Solution: We want the number of positive integer solutions to

a+b+c+d =100,

(939> = 156849.

which by Theorem 276 is

279 Corollary Let n be a positive integer. The number of non-negative integer solutions to

Yyi+y2tetyr=n
<n+r71>
r—1 )’

x1—l+x—14+-+x—-1=n

is

Proof: Putx, —1=y,. Then x, > 1. The equation

is equivalent to
X1 tXx2+--+XxXp=n+r,

(n-i—r—l)
r—1

66
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280 Example Find the number of quadruples (a,b,c,d) of integers satisfying

a+b+c+d=100, a>30,b>21,c>1,d> 1.

Solution: Put @’ +29 = a,b’ +20 = b. Then we want the number of positive integer solutions to
d +29+b +21+c+d =100,

or
a+b +c+d=50.

49
< 3 ) = 18424.

281 Example In how many ways may 1024 be written as the product of three positive integers?

By Theorem 276 this number is

Solution: Observe that 1024 = 210, We need a decomposition of the form 210 — 2“2”20, that is, we need integers solutions to
a+b+c=10, a>0,b>0,c>0.

By Corollary 279 there are (10;3; 1) = (122) = 66 such solutions.

282 Example Find the number of quadruples (a,b,c,d) of non-negative integers which satisfy the inequality

a+b+c+d <2001.

Solution: The number of non-negative solutions to
a+b+c+d <2001

equals the number of solutions to
a+b+c+d+ f=2001

where f is a non-negative integer. This number is the same as the number of positive integer solutions to
ai—1+by—14c;—1+d; -1+ f1 —1=2001,

which is easily seen to be (2(1?5) .

6.3 Inclusion-Exclusion

The Sum Rule 240 gives us the cardinality for unions of finite sets that are mutually disjoint. In this section we will drop the disjointness
requirement and obtain a formula for the cardinality of unions of general finite sets.

The Principle of Inclusion-Exclusion is attributed to both Sylvester and to Poincaré.
283 Theorem (Two set Inclusion-Exclusion)
card (AUB) = card (A) 4 card (B) — card (AN B)
Proof: In the Venn diagram 6.5, we mark by R the number of elements which are simultaneously in both sets (i.e., in ANB),

by Ry the number of elements which are in A but not in B (i.e., in A\ B), and by Rz the number of elements which are B but not
inA(ie.in B\A). We have R| + R, + R3 = card (AUB), which proves the theorem. Q

284 Example Of 40 people, 28 smoke and 16 chew tobacco. It is also known that 10 both smoke and chew. How many among the 40
neither smoke nor chew?

Solution: Let A denote the set of smokers and B the set of chewers. Then

card (AUB) = card (A) 4 card (B) —card (ANB) = 284+ 16 — 10 = 34,
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meaning that there are 34 people that either smoke or chew (or possibly both). Therefore the number of people that neither smoke nor chew
is40—34 =6.

Aliter: We fill up the Venn diagram in figure 6.6 as follows. Since |[ANB| = 8, we put an 10 in the intersection. Then we put a 28 — 10 = 18
in the part that A does not overlap B and a 16 — 10 = 6 in the part of B that does not overlap A. We have accounted for 10+ 1846 =34
people that are in at least one of the set. The remaining 40 — 34 = 6 are outside the sets.

A B A B

Figure 6.5: Two-set Inclusion-Exclusion Figure 6.6: Example 284.

285 Example Consider the set
A={2,4/6,...,114}.

How many elements are there in A?

How many are divisible by 3?

How many are divisible by 5?

How many are divisible by 15?

How many are divisible by either 3, 5 or both?

How many are neither divisible by 3 nor 5?

O © © ©6 ©® 0 O

How many are divisible by exactly one of 3 or 5?

Solution: Let A3 C A be the set of those integers divisible by 3 and A5 C A be the set of those integers divisible by 5.
® Notice that the elements are 2 =2(1),4 =2(2), ..., 114 =2(57). Thus card (A) = 57.
@ There are L%J = 19 integers in A divisible by 3. They are

{6,12,18,... 114}

Notice that 114 = 6(19). Thus card (A3) = 19.
© There are L55—7J = 11 integers in A divisible by 5. They are

{10,20,30,...,110}.

Notice that 110 = 10(11). Thus card (As) = 11

O There are L%J =3 integers in A divisible by 15. They are {30,60,90}. Notice that 90 = 30(3). Thus card (A;5) = 3, and observe that
by Theorem ?? we have card (A|s) = card (A3 NAs).

@ We want card (A3 UAs5) = 19+ 11 = 30.

@ We want
card (A\ (A3 UAs)) = card (A) — card (A3 UAs) =57 —30 =27.
©® We want
card ((A3UAs)\ (A3NAs)) = card((A3UAs)) —card (A3 NAs)
= 30-3
= 27
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286 Example How many integers between 1 and 1000 inclusive, do not share a common factor with 1000, that is, are relatively prime to
1000?

Solution: Observe that 1000 = 2353, and thus from the 1000 integers we must weed out those that have a factor of 2 or of 5 in their prime

1000
factorisation. If A; denotes the set of those integers divisible by 2 in the interval [1;1000] then clearly card (4;) = LTJ = 500. Similarly,

1000 1000
if A5 denotes the set of those integers divisible by 5 then card (As) = L?j =200. Also card (A; NAs) = [TJ = 100. This means that

there are card (Ay UAs) = 5004200 — 100 = 600 integers in the interval [1;1000] sharing at least a factor with 1000, thus there are
1000 — 600 = 400 integers in [1;1000] that do not share a factor prime factor with 1000.

We now derive a three-set version of the Principle of Inclusion-Exclusion.

(G

Figure 6.7: Three-set Inclusion-Exclusion

287 Theorem (Three set Inclusion-Exclusion)

card(AUBUC) = card(A)+card(B)+card(C)
—card (ANB) —card (BNC) —card (CNA)

+card(ANBNC)

Proof: Using the associativity and distributivity of unions of sets, we see that

card (AUBUC) card (AU (BUC))
= card(A)+card (BUC) —card (AN (BUC))
= card(A)+card (BUC) —card ((ANB)U(ANC))
= card(A)+ card (B) + card (C) — card (BNC)

—card (ANB) —card (ANC)

+eard (ANB)N(ANC))
= card(A)+card (B) + card (C) — card (BNC)

— (card (ANB) +card (ANC) —card (ANBNC))
= card(A) +card (B) + card (C)

—card (ANB) —card (BNC) —card (CNA)

+card(ANBNC).
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This gives the Inclusion-Exclusion Formula for three sets. See also figure 6.7.
a

Observe that in the Venn diagram in figure 6.7 there are 8 disjoint regions (the 7 that form AUBUC and the outside region, devoid of any
element belonging to AUBUC).

288 Example How many integers between 1 and 600 inclusive are not divisible by neither 3, nor 5, nor 7?

Solution: Let A; denote the numbers in [1;600] which are divisible by k = 3,5,7. Then

card(4;) = [9%0] = 200,
card (As) = L6(5)—OJ = 120,
card (A7) = L6(7)—0J = 85,
card(A5) = |59 = 40
card (A7) = L%J = 28
card(A35) = L%J = 17
card(Ags) = |92 = 5

By Inclusion-Exclusion there are 200+ 120485 —40 — 28 — 17+ 5 = 325 integers in [1;600] divisible by at least one of 3, 5, or 7. Those
not divisible by these numbers are a total of 600 — 325 = 275.

C without a 9
A B
withouta 7 without an 8
Figure 6.8: Example 289. Figure 6.9: Example 290.

289 Example In a group of 30 people, 8 speak English, 12 speak Spanish and 10 speak French. It is known that 5 speak English and
Spanish, 5 Spanish and French, and 7 English and French. The number of people speaking all three languages is 3. How many do not speak
any of these languages?

Solution: Let A be the set of all English speakers, B the set of Spanish speakers and C the set of French speakers in our group. We fill-up the
Venn diagram in figure 6.8 successively. In the intersection of all three we put 8. In the region common to A and B which is not filled up we
put 5 —2 = 3. In the region common to A and C which is not already filled up we put 5 —3 = 2. In the region common to B and C which is
not already filled up, we put 7 — 3 = 4. In the remaining part of A we put 8 —2 —3 —2 =1, in the remaining part of B we put

12—4—3—2 =3, and in the remaining part of C we put 10 —2 —3 —4 = 1. Each of the mutually disjoint regions comprise a total of
14+2+3+4+1+243 = 16 persons. Those outside these three sets are then 30 — 16 = 14.

290 Example Consider the set of 5-digit positive integers written in decimal notation.

1. How many are there? 4. How many have exactly one 9?7
2. How many do not have a 9 in their decimal representation? 5. How many have exactly two 9’s?
3. How many have at least one 9 in their decimal representation? 6. How many have exactly three 9’s?
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7. How many have exactly four 9’s? 10. How many have neither a 7, nor an §, nor a 9 in their decimal

8. How many have exactly five 9°s? representation?

9. How many have neither an 8 nor a 9 in their decimal 11. How many have either a 7, an 8, or a 9 in their decimal
representation? representation?

Solution:

1. There are 9 possible choices for the first digit and 10 possible place can be accomplished in (3) = 6 ways. The other two
choices for the remaining digits. The number of choices is remaining digits must be different from 9, giving 6- 92 — 486
thus 9- 10* = 90000. such numbers. If the first digit is not a 9, then there are 8

R . .. 4y

2. There are 8 possible choices for the first digit and 9 possible choices for this first digit. /’\1305 we have (3) =4 ways of
choices for the remaining digits. The number of choices is chqosmg Where. the three 9’s Wlu be,.and we have 9 ways of
thus 8- 94 — 52488. filling the remaining spot. Thus in this case there are

8-4-9 = 288 such numbers. Altogether there are

3. The difference 90000 — 52488 = 37512. 486+ 288 = 774 five-digit positive integers with exactly three

4. We condition on the first digit. If the first digit is a 9 then the 9’s in their decimal representation.
other four remaining digits must be different from 9, giving 7. If the first digit is a 9 then three of the remaining four must be
9% = 6561 such numbers. If the first digit is not a 9, then there 9’s, and the choice of place can be accomplished in ‘3‘) =4
are 8 choices for this first digit. Also, we have g) =4 ways ways. The other remaining digit must be different from 9,
of choosing where the 9 will be, and we have 9° ways of giving 4 -9 = 36 such numbers. If the first digit isnota 9,
filling the 3 remaining spots. Thus in this case there are then there are 8 choices for this first digit. Also, we have
8-4-93 = 23328 such numbers. In total there are (i) = 4 ways of choosing where the four 9°s will be, thus
6561 +23328 = 29889 five-digit positive integers with filling all the spots. Thus in this case there are 8- 1 = 8 such
exactly one 9 in their decimal representation. numbers. Altogether there are 36+ 8 = 44 five-digit positive
5. We condition on the first digit. If the first digit is a 9 then one integers with exactly three 9’s in their decimal representation.
of the remaining four must be a 9, and the choice of place can 8. There is obviously only 1 such positive integer.
be accomplished in (‘1‘) =4 ways. The other three remaining
digits must be different from 9, giving 4 - 9% = 2916 such @0bserve that
numbers. If the first digit is not a 9, then there are 8 choices 37512 =29889 4 6804 + 774 +44 4+ 1.

for this first digit. Also, we have (3) = 6 ways of choosing
where the two 9’s will be, and we have 92 ways of filling the
two remaining spots. Thus in this case there are

9. We have 7 choices for the first digit and 8 choices for the
remaining 4 digits, giving 7-8* = 28672 such integers.

8-6-92 = 3888 such numbers. Altogether there are 10. We have 6 choices for the first digit and 7 choices for the
2916 4 3888 = 6804 five-digit positive integers with exactly remaining 4 digits, giving 6- 7% = 14406 such integers.
two 9’s in their decimal representation. 11. We use inclusion-exclusion. From figure 6.9, the numbers
6. Again we condition on the first digit. If the first digit isa 9 inside the circles add up to 85854. Thus the desired number is
then two of the remaining four must be 9’s, and the choice of 90000 — 85854 = 4146.
291 Example

How many integral solutions to the equation
a+b+c+d =100,

are there given the following constraints:
1<a<10,b6>0, ¢>2,20<d <30?

Solution: We use Inclusion-Exclusion. There are (830 ) = 82160 integral solutions to

a+b+c+d =100, a>1,b>0,c>2,d > 20.

Let A be the set of solutions with
a>11,b>0,c>2,d >20

and B be the set of solutions with
a>1,b>0,c>2,d>3l.

Then card (A) = (730) ,card(B) = (639) ,card(ANB) = (539) and so
card(AUB) = <730> + (639> - <539> =74625.

a+b+c+d =100

The total number of solutions to
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with

1<a<10,b>0,c¢>2,20<d<30
is thus

80 70 69 59

(3)*<3>*<3>+<3>‘7535'
Homework

292 Problem Telephone numbers in Land of the Flying Camels have 7 digits, and the only digits available are {0,1,2,3,4,5,7,8}. No
telephone number may begin in O, 1 or 5. Find the number of telephone numbers possible that meet the following criteria:

© You may repeat all digits.

® You may not repeat any of the digits.

© You may repeat the digits, but the phone number must be even.
® You may repeat the digits, but the phone number must be odd.

O You may not repeat the digits and the phone numbers must be odd.

293 Problem The number 3 can be expressed as a sum of one or more positive integers in four ways, namely, as 3,142,241, and
141+ 1. Shew that any positive integer n can be so expressed in 2~ ! ways.

294 Problem Let n = 231319 How many positive integer divisors of n? are less than n but do not divide n?

295 Problem In how many ways can one decompose the set
{1,2,3,...,100}
into subsets A, B, C satisfying

AUBUC ={1,2,3,...,100} and ANBNC = &?

296 Problem How many two or three letter initials for people are available if at least one of the letters must be a D and one allows
repetitions?

297 Problem How many strictly positive integers have all their digits distinct?
298 Problem To write a book 1890 digits were utilised. How many pages does the book have?

299 Problem The sequence of palindromes, starting with 1 is written in ascending order
1,2,3,4,5,6,7,8,9,11,22,33, ...

Find the 1984-th positive palindrome.

300 Problem (AIME 1994) Given a positive integer n, let p(n) be the product of the non-zero digits of n. (If n has only one digit, then p(n)
is equal to that digit.) Let
S=p1)+p2)+---+p(999).

Find §S.

301 Problem In each of the 6-digit numbers
333333,225522,118818,707099,

each digit in the number appears at least twice. Find the number of such 6-digit natural numbers.

302 Problem In each of the 7-digit numbers
1001011, 5550000,3838383,77777717,

each digit in the number appears at least thrice. Find the number of such 7-digit natural numbers.
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303 Problem Would you believe a market investigator that reports that of 1000 people, 816 like candy, 723 like ice cream, 645 cake, while
562 like both candy and ice cream, 463 like both candy and cake, 470 both ice cream and cake, while 310 like all three? State your reasons!

304 Problem A survey shews that 90% of high-schoolers in Philadelphia like at least one of the following activities: going to the movies,
playing sports, or reading. It is known that 45% like the movies, 48% like sports, and 35% like reading. Also, it is known that 12% like both
the movies and reading, 20% like only the movies, and 15% only reading. What percent of high-schoolers like all three activities?

305 Problem An auto insurance company has 10,000 policyholders. Each policy holder is classified as

e young or old,
e male or female, and

e married or single.

Of these policyholders, 3000 are young, 4600 are male, and 7000 are married. The policyholders can also be classified as 1320 young males,
3010 married males, and 1400 young married persons. Finally, 600 of the policyholders are young married males.

How many of the company’s policyholders are young, female, and single?

306 Problem In Medieval High there are forty students. Amongst them, fourteen like Mathematics, sixteen like theology, and eleven like
alchemy. It is also known that seven like Mathematics and theology, eight like theology and alchemy and five like Mathematics and alchemy.
All three subjects are favoured by four students. How many students like neither Mathematics, nor theology, nor alchemy?

307 Problem (AHSME 1991) For a set S, let n(S) denote the number of subsets of S. If A, B,C, are sets for which
n(A)+n(B)+n(C) =n(AUBUC) and card (A) = card (B) = 100,
then what is the minimum possible value of card(ANBNC)?

308 Problem (Lewis Carroll in A Tangled Tale.) In a very hotly fought battle, at least 70% of the combatants lost an eye, at least 75% an
ear, at least 80% an arm, and at least 85% a leg. What can be said about the percentage who lost all four members?

Answers

292 We have

® Thisis 5-8% = 1310720.
Thisis5-7-6-5-4-3-2 = 25200.
This is 5-8° - 4 = 655360.
This is 5-8° - 4 = 655360.

@ © © 0O

We condition on the last digit. If the last digit were 1 or 5 then we would have 5 choices for the first digit, and so we would have
5:6-5-4-3-2-2=7200

phone numbers. If the last digit were either 3 or 7, then we would have 4 choices for the last digit and so we would have
4.6-5-4-3-2-2 =5760

phone numbers. Thus the total number of phone numbers is

7200+ 5760 = 12960.

293 n=141+4---41. One either erases or keeps a plus sign.
N————

n—1 +'s

294 There are 589 such values. The easiest way to see this is to observe that there is a bijection between the divisors of n> which are > n
and those < n. For if n2 = ab, with a > n, then b < n, because otherwise n* =ab > n-n = n?, a contradiction. Also, there is exactly one
decomposition n? = n-n. Thus the desired number is

d(n?)

(63)(39)
2 2

L 2

|+1—d(n) = 1|4 1—(32)(20) = 589.
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295 The conditions of the problem stipulate that both the region outside the circles in diagram 6.7 and Rz will be empty. We are thus left
with 6 regions to distribute 100 numbers. To each of the 100 numbers we may thus assign one of 6 labels. The number of sets thus required
is 6100,

296 (262 —25%) 4 (26% —25%) = 2002
297
9+9-9

+9-9-849-9-8-7
+9-9-8-7-64+9-9-8-7-6-5
+9-9-8-7-6-5-4+9-9-8-7-6-5-4-3
+9-9-8-7-6-5-4-3-2
4+9-9-8-7-6-5-4-3-2-1
= 8877690

298 A total of

1-9+4+2-90 =189
digits are used to write pages 1 to 99, inclusive. We have of 1890 — 189 = 1701 digits at our disposition which is enough for 1701/3 = 567
extra pages (starting from page 100). The book has 99+ 567 = 666 pages.

299 It is easy to see that there are 9 palindromes of 1-digit, 9 palindromes with 2-digits, 90 with 3-digits, 90 with 4-digits, 900 with 5-digits
and 900 with 6-digits. The last palindrome with 6 digits, 999999, constitutes the 9 49 490 490 + 900 4- 900 = 1998th palindrome. Hence,
the 1997th palindrome is 998899, the 1996th palindrome is 997799, the 1995th palindrome is 996699, the 1994th is 995599, etc., until we
find the 1984th palindrome to be 985589.

300 If x =0, put m(x) = 1, otherwise put m(x) = x. We use three digits to label all the integers, from 000 to 999 If a, b, c are digits, then
clearly p(100a+ 10b+c¢) = m(a)m(b)m(c). Thus

p(000) +--- 4+ p(999) = m(0)m(0)m(0) + - - - +-m(9)m(9)m(9),
which in turn
= (m(0)+m(1)+---+m(9))’
= (1+14+2+--+9)
= 463
= 97336.

Hence

S = p(001)+ p(002) +--- + p(999)
— 97336 p(000)
— 97336 —m(0)m(0)m(0)
— 97335

301 The numbers belong to the following categories: (I) all six digits are identical; (II) there are exactly two different digits used, three of
one kind, three of the other; (III) there are exactly two different digits used, two of one kind, four of the other; (IV) there are exactly three
different digits used, two of each kind.

There are clearly 9 numbers belonging to category (I). To count the numbers in the remaining categories, we must consider the cases when

) 3

the digit 0 is used or not. If 0 is not used, then there are (g) "I

= 720 integers in category (II); (?) ( = 1080 integers in category
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212121
—+

9y (!
category (II) ; (1) . (W

5!
= 7560 integers in category (IV). If O is used, then the integers may not start with 0. There are (?) T 90 in

= 3240 in category (IV). Thus there are altogether

(IIT); and (3)

= 135 in category (III) ; and (g) 2 12121

301
9+720+ 1080+ 7560 +90 + 135+ 3240 = 12834

such integers.

302 The numbers belong to the following categories: (I) all seven digits are identical; (II) there are exactly two different digits used, three of
one kind, four of the other.

There are clearly 9 numbers belonging to category (I). To count the numbers in the remaining category (II), we must consider the cases when

the digit O is used or not. If 0 is not used, then there are (?) (513) . W = 2520 integers in category (II). If O is used, then the integers may not

o 6 o 6

start with 0. There are (1) . W + (1) 331 315 in category (II). Thus there are altogether 25204315 9 = 2844 such integers.

303 Let C denote the set of people who like candy, / the set of people who like ice cream, and K denote the set of people who like cake. We
are given that card (C) = 816, card (1) = 723, card (K) = 645, card (CNI) = 562, card (CNK) = 463, card (INK) = 470, and
card (CNINK) = 310. By Inclusion-Exclusion we have

card(CUIUK) = card(C)+card(I)+ card (K)
—card (CNI)—card(CNK)—card(INC)
+card (CNINK)
= 8164723 +645—-562—-463 —470+310

= 999.
The investigator miscounted, or probably did not report one person who may not have liked any of the three things.

304 We make the Venn diagram in as in figure 6.10. From it we gather the following system of equations

x + ¥y + z + 20 = 45
X + z + t + u = 48
X 4y + ot + 15 = 35
x + y = 12
x + y + z + ¢t + u + 15 + 20 = 9

The solution of this system is seentobe x =5,y =7,z = 13,¢ = 8, u = 22. Thus the percent wanted is 5%.

305 LetY,F,S,M stand for young, female, single, male, respectively, and let Ma stand for married. We have

card(YNFNS)

card (Y NF)—card (Y NF NMa)
= card(Y) —card (Y NM)

—(card (Y "Ma) — card (Y NMaNM))
= 3000 — 1320 — (1400 — 600)

= 880.

75



76 Chapter 6

306 Let A be the set of students liking Mathematics, B the set of students liking theology, and C be the set of students liking alchemy. We

are given that
card (A) = 14,card (B) = 16,card (C) = 11,card (ANB) = 7,card (BNC) = 8,card (ANC) = 5,

and
card(ANBNC) =4.

By the Principle of Inclusion-Exclusion,
card (EAﬂCBﬂ EC) =40 — card (A) — card (B) — card (C) +card (AN B) +card (ANC) +card (BNC) —card (ANBNC)
Substituting the numerical values of these cardinalities
40—-14—-16—-11+7+5+8—-4 =15.
307 A set with k elements has 2% different subsets. We are given

2100 | 5100 | Hcard(C) _ peard(AUBUC)

This forces card (C) = 101, as 1+ 244(€)=101 js Jarger than 1 and a power of 2. Hence card (AUBUC) = 102. Using the Principle
Inclusion-Exclusion, since card (A) + card (B) 4 card (C) — card (AUBUC) = 199,

card(ANBNC)

card (ANB) +card (ANC) +card (BNC) — 199
= (card(A)+card(B) —card (AUB)) + (card (A) 4 card (C) — card (AUC))

+(card (B) +card (C) — card (BUC)) — 199

403 — card (AUB) —card (AUC) —card (BUC).

As AUB,AUC,BUC C AUBUC, the cardinalities of all these sets are < 102. Thus
card (ANBNC) =403 —card (AUB) —card (AUC) — card (BUC) > 403 —-3-102 =97.

The example
A=1{1,2,...,100},B = {3,4,...,102},

and
C=1{1,2,3,4,5,6,...,101,102}

shews that card (ANBNC) = card ({4,5,6,...,100}) = 97 is attainable.

308 Let A denote the set of those who lost an eye, B denote those who lost an ear, C denote those who lost an arm and D denote those losing
aleg. Suppose there are n combatants. Then

n > card(AUB)
= card(A)+card (B) —card (AN B)

= Tn+.75n—card (ANB),

n > card(CUD)
= card(C)+card (D) —card (CN D)

.8n+.85n—card (CND).

This gives
card (ANB) > .45n,

card (CND) > .65n.

This means that

n > card((ANB)U(CND))

= card(ANB)+card (CND)—card(ANBNCND)

v

A45n+ .65n—card (ANBNCND),
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whence

card(ANBNCND) > 45+ .65n—n = .1n.

This means that at least 10% of the combatants lost all four members.

Sports

Movies

Figure 6.10: Problem 304.

Reading
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Chapter

Sums and Recursions

7.1 Famous Sums

To obtain a closed form for
n(n+1)

2

we utilise Gauss’ trick: If
Ap=1+4243+-+n

then
Ap=n+n—-1)~+---+1.

Adding these two quantities,

Ap = 1 + 2 +
A, = n + (n—1) +
24, = (n+1) + (n+1) +
= n(n+1),
since there are n summands. This gives A, = n(n2+ D , that is,
1424 4n= ”(”;1).

Applying Gauss’s trick to the general arithmetic sum

(@)+(a+d)+(a+2d)+--- + (a+ (n—1)d)

we obtain

(@)+(a+d)+(a+2d)+---+(a+(n—1)d) =

+

(n+1)

n(2a+ (n—1)d)

2

(7.1)

(72)

309 Example Each element of the set {10,11,12,...,19,20} is multiplied by each element of the set {21,22,23,...,29,30}. If all these

products are added, what is the resulting sum?

Solution: This is asking for the product (104 11+ --- +20)(21 +22+ - -- +30) after all the terms are multiplied. But

104114+ +20 = 20F100D
and o
21+22+...+30:%

The required total is (165)(255) = 42075.

78
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310 Example Find the sum of all integers between 1 and 100 that leave remainder 2 upon division by 6.

Solution: We want the sum of the integers of the form 6r+2,r =0,1,...,16. But this is

16 16 16 16(17)
Z%(sr+2):6z;r+z;2:6 5 +2(17) = 850.
r=l r=l r=l

A geometric progression is one of the form

a,ar,ar,ar’,.. . ar" .

311 Example Find the following geometric sum:
1+2+4+---+1024.

Solution: Let
S=1424+4+---+1024.
Then
28 =2+4+48+---+102442048.
Hence
S=25—-S=(2+4+8---42048) — (1 +2+4+--- +1024) = 2048 — 1 =2047.

312 Example Find the geometric sum

1 1 1 1
Solution: We have
1 1 1 1
§X_3_2+3_3+.“+3T9+31W'
Then
%x = xf%x

From which we gather

—_
—_

2 2.3%9°

Let us sum now the geometric series
S=a+ar+ar* +---+a" .

Plainly, if = 1 then S = na, so we may assume that r # 1. We have

rS=ar+ar*+--+ar'.

Hence
S—rS=a+ar+ar*+-+a" ' —ar—ar* — - —ar" =a—ar".
From this we deduce that
§_ a—ar"
Tol=r
that is,
a—ar"
atar+---+ar'" = I (73)
—r
If |r| < 1thenr" —0asn— .
For |r| < 1, we obtain the sum of the infinite geometric series
a+ar+art+--- = 1 7.4
—r
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313 Example A fly starts at the origin and goes 1 unit up, 1/2 unit right, 1/4 unit down, 1/8 unit left, 1,/16 unit up, etc., ad infinitum. In

what coordinates does it end up?

Solution: Its x coordinate is

1 1 1
2 8 32
Its y coordinate is
11
4 16

Therefore, the fly ends up in (%7 %)

‘We now sum again of the first n positive integers, which we have already computed using Gauss’ trick.

314 Example Find a closed formula for

_ 3 _2
= — ==
1-Z 5
1 4
1—=L 5

Ap=142+4-+n.

Solution: Observe that

K —(k—1)>=2k—1.

From this
1202
22 12
3222
n?—(n—
Adding both columns,

= 2-1-1
= 2.2-1
= 2.3-1
) = 2.n—-1

n?—0>=2(142+34-+n) —n

Solving for the sum,

14243+--4+n=n"/2+4n/2 =

315 Example Find the sum

n(n+1)
I

124224324 402

Solution: Observe that

3 — (k—
Hence
1¥-0°
23 o 13
33 _ 23
nw—(n—1)3
Adding both columns,

=03 =312 +22 432 4 4 n?) = 3(1 4243+ +n)+n

From the preceding example 14+2+3+---+n=-n?/2+n/2 =

1)3 =3k =3k +1.

= 3.12-3.1+1
= 3.22-3.2+41
= 3.32-3.3+1
= 3.n2-3-n+1

n(n+1)

2

3
n’—03 :3(12+22+32+-~-+n2)—§~n(n+1)+n.

80



Famous Sums

81

Solving for the sum,

After simplifying we obtain

316 Example Add the series

Solution: Observe that

Thus

Adding both columns,

317 Example Add

Solution: Observe that

Thus

Summing both columns,

318 Example Sum

Solution: Observe that

3

n 1
12+22+32+~~~+n2:?-ﬁ-z-n(n-ﬁ-l)

124224324 it =

kk+1) &

d
B
(3]

I

9|

-
Il

=

E"|_.
N

I
W=

+

.‘_
.‘_

—
[\
[\S}
w
Zl
e
N
—

+

1 N 1 1
1-4 4.7 7-10

1 1

99-100

ot t

1

6

1

n

n(n+1)(2n+1)

19

100~ 1007

1

31-34°

1

(Bn+1)-(3n+4) 3 3n+1 3 3n+4

1 — 1_1
1-4 - 3 12
1 _ 11
4.7 - 12 21
1 11
7-10 - 21 30
1 11
10-13 - 30 39
D S B I
34.37 - 102 111
1 N 1 N 1 I 11 1 12
1-4 4.7 7-10 31-34 3 111 37
1 N 1 N 1 - 1
1-4-7 ' 4.7-10 ' 7-10-13 25.28-31°
1 1 1 1

1

(Gn+1)-Gn+4)-3n+7) 6 (Bn+1)(3n+4) 6 (3n+4)(3n+7)

(7.5)

81



82 Chapter 7

Therefore
1 - 1 1
147 = &14 647
1 = 1__ _1_
7710 = 647 6710
1 _ 11
7-10-13 — 6710 6-10-13
1 _ [
25.28:31 ~ 62528 62831
Adding each column,
1 N 1 n 1 o 1 1 1 9
1-4-7 4.7-10 7-10-13 25.-28-31  6-1-4 6-28-31 217"

319 Example Find the sum
1-2+42-3+3-44+---499-100.

Solution: Observe that

1 1
k(k+1) = g(k)(k+1)(k+2)f 3(1(71)(]()(](4‘1).
Therefore
1-2 = %.1.2.3,%.0.1.2
2.3 = %.2.3.4_%.1.2.3
3.4 = %.3.4.5_%.2.3.4
99-100 = £-99-100-101— £-98-99-100

Adding each column,
1 1
1-242-3+3-4+---499-100 = §~99-100-101— §-O~1~2:333300.

7.2 First Order Recursions
The order of the recurrence is the difference between the highest and the lowest subscripts. For example
Upy —Upt1] =2

is of the first order, and

Upt4 + 9u5 =n

is of the fourth order.
A recurrence is linear if the subscripted letters appear only to the first power. For example

Upy —Upt1] =2
is a linear recurrence and
xﬁ +nx,_1=1 and x, +2"' =3

are not linear recurrences.
A recursion is homogeneous if all its terms contain the subscripted variable to the same power. Thus
Xmt3 + 8%y — 9xm =0

is homogeneous. The equation
Xm+3 + 88Xy — 9%y = m* —3
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is not homogeneous.

A closed form of a recurrence is a formula that permits us to find the n-th term of the recurrence without having to know a priori the terms
preceding it.

We outline a method for solving first order linear recurrence relations of the form
Xn = aXp—1 +f(n)7a ?é 1,
where f is a polynomial.

1. First solve the homogeneous recurrence x, = ax,_; by “raising the subscripts” in the form x” = ax"~!. This we call the characteristic
equation. Cancelling this gives x = a. The solution to the homogeneous equation x, = ax,_1 will be of the form x, = Aa", where A is
a constant to be determined.

2. Test a solution of the form x,, = Aa" + g(n), where g is a polynomial of the same degree as f.
320 Example Let xg =7 and x,, = 2x,_,n > 1. Find a closed form for x;,.

Solution: Raising subscripts we have the characteristic equation x" = 2x"~!. Cancelling, x = 2. Thus we try a solution of the form x, = A2",
were A is a constant. But 7 = xg = A2° and so A = 7. The solution is thus x, = 7(2)".
Aliter: We have

X0 = 7

X1 = 2X()
X2 = 2X1
X3 = ZXQ
Xn = 2x

Multiplying both columns,
Xox1 X =T 2" X0X1 X2+ Xy -
Cancelling the common factors on both sides of the equality,

xp=17-2".
321 Example Letxy =7 and x,, = 2x,_| + 1,n > 1. Find a closed form for x;,.

Solution: By raising the subscripts in the homogeneous equation we obtain x = 2x"~! or x = 2. A solution to the homogeneous equation
will be of the form x, = A(2)". Now f(n) = 1 is a polynomial of degree O (a constant) and so we test a particular constant solution C. The
general solution will have the form x,, = A2" 4+ B. Now, 7 = xg = A2 +B=A+B. Also,x; =2xg+7=15and so 15 =x; =24 +B.
Solving the simultaneous equations
A+B=1,

2A+B =15,
we find A = 8,B = —1. So the solution is x, = 8(2") — 1 =2"+3 1.
Aliter: We have:

X0 = 7

X = 2x+1
X = 2x+1
X3 = 2x+1
Xp—1 = 2, 0+1
Xn = 2x,_1+1
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Multiply the kth row by 2"~ . We obtain

2"x = 2".7

271y = 212!
22y = 2l 4 2n2
23y = 2y 42n3
2x,_y = 23x,_3+22
21 = 220 +2
Xp = 2x,1+1

Adding both columns, cancelling, and adding the geometric sum,

=72+ (142422 +. 42" =720 42" 1 =273
Aliter: Letup = xp,+1=2x,_1 +2 =2(x,—1 + 1) = 2u,,_;. We solve the recursion u, = 2u,_1 as we did on our first example:
ty = 2"upy = 2" (xo + 1) = 2"-8 = 2"*3 Finally, x, = u, — 1 =2"+3 — 1.

322 Example Let xy = 2,x, = 9x,_1 —56n+ 63. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneous equation we obtain the characteristic equation ¥ = 9x"~! or x = 9. A solution to the
homogeneous equation will be of the form x, = A(9)". Now f(n) = —56n+ 63 is a polynomial of degree 1 and so we test a particular
solution of the form Bn+C. The general solution will have the form x, = A9" + Bn+C. Now

X0 =2,x] =9(2) =56+ 63 =25,x) = 9(25) —56(2) + 63 = 176. We thus solve the system

2=A+C,

25=9A+B+C,
176 =81A+2B+C.
We find A =2,B =7,C =0. The general solution is x,, = 2(9") + 7n.

323 Example Let xo = 1,x, = 3x,_1 — 2n% 4+ 6n— 3. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneous equation we obtain the characteristic equation ¥ = 3x"~! or x = 9. A solution to the
homogeneous equation will be of the form x, = A(3)". Now f(n) = —2n? 4 6n — 3 is a polynomial of degree 2 and so we test a particular
solution of the form Bn? +Cn+ D. The general solution will have the form x,, = A3" + Bn? +Cn+ D. Now

xo=1,x; =3(1)=24+6—3 =4,x =3(4) —2(2)2 +6(2) —3 = 13,x3 = 3(13) —2(3)2 +-6(3) — 3 = 36. We thus solve the system

1=A+D,

4=3A+B+C+D,
13=9A+4B+2C+D,
36 =27A+9B+3C+D.
We find A= B =1,C = D =0. The general solution is x, = 3" +n?.

324 Example Find a closed form for x, = 2x,_1 + 3", x0 = 2.

Solution: We test a solution of the form x,, = A2" 4+ B3". Then xp = 2,x; = 2(2) + 30 = 5. We solve the system
2=A+B,
7=2A+3B.
We find A = 1,B = 1. The general solution is x;,, = 2" 4 3".

‘We now tackle the case when a = 1. In this case, we simply consider a polynomial g of degree 1 higher than the degree of f.
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325 Example Let xo =7 and x,, = x,,_1 +n,n > 1. Find a closed formula for x;,.

Solution: By raising the subscripts in the homogeneous equation we obtain the characteristic equation " = x"~! or x = 1. A solution to the

homogeneous equation will be of the form x,, = A(1)" = A, a constant. Now f(n) = n is a polynomial of degree 1 and so we test a particular
solution of the form Bn? 4+ Cn + D, one more degree than that of f. The general solution will have the form x, = A+ Bn? +Cn+D. Since A
and D are constants, we may combine them to obtain x,, = Bn? +Cn+E. Now, xg = 7,x1 =74+1=28,x, =842 =10. So we solve the
system

7=E,

8=B+C+E,

10=4B+2C+E.
1 .. 2 n
We find B=C = E,E:7. The general solutionis x, = — + = +7.

2 2
Aliter: We have

X0 = 7
x; = xp+1
X = x1+2
x3 = xp+3
Xp = Xp—1+n
Adding both columns,
xo+xi+x+-+x,=T+x0+x2+ - +x,1+(14+24+34+---+n).
1
Cancelling and using thefactthat1+2+-~-+n:@,
1
xn:7+n(n;— )

Some non-linear first order recursions maybe reduced to a linear first order recursion by a suitable transformation.
326 Example A recursion satisfies ug = 3, u,21 41 =tn,n > 1. Find a closed form for this recursion.

2

Solution: Let v,, = logu,. Then v, = logu, = loguii1 = %logun,l = V”—z" As v, =v,_1/2, we have v, = v /2", that is,

logu, = (logug)/2". Therefore, u, = 3'/%".

327 Example (Putnam 1985) Let d be a real number. For each integer m > 0, define a sequence ap(j), j=0,1,2,--- by an(0) = %7 and

am(j+1) = (am(j+1))> +2am(j),j > 0. Evaluate
lim a,(n).

n—oo

Solution: Observe that ap (j+1)+1 = (am())? +2am(j) +1 = (am(j) +1)*. Put v; = ay(j) + 1. Then v 4y = v%, and Inv; | =2Invj;
Puty; =Inv;. Theny;.| = 2y;; and hence 2"yy =y, or 2" Invy = Inv, or v, = (v9)>" = (1+ £5)>" or am(n) +1 = (1+ £+ )*". Thus
an(n):(2%+1)2"71He‘171asnﬂoo.

7.3 Second Order Recursions

All the recursions that we have so far examined are first order recursions, that is, we find the next term of the sequence given the preceding
one. Let us now briefly examine how to solve some second order recursions.

‘We now outline a method for solving second order homogeneous linear recurrence relations of the form

Xn = axy—1 +bxy_2.
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1. Find the characteristic equation by “raising the subscripts” in the form x" = ax"~! 4 bx"~2. Cancelling this gives x> —ax — b = 0.
This equation has two roots r{ and r.

2. If the roots are different, the solution will be of the form x, = A(r|)" 4+ B(ry)", where A, B are constants.

3. If the roots are identical, the solution will be of the form x, = A(r1)" + Bn(r)".

328 Example Letxo =1,x; = —1,x,42 + 5x,41 +6x, =0.

Solution: The characteristic equation is x> +5x+6 = (x+3)(x+2) = 0. Thus we test a solution of the form x, = A(—2)" + B(—3)". Since
l=x9=A+B,—1=—2A—-3B, we quickly find A =2,B = —1. Thus the solution is x, = 2(—2)" — (=3)".

329 Example Find a closed form for the Fibonacci recursion fy =0, fi = 1, f, = fu—1 + fu—2-

Solution: The characteristic equation is f 2_ f—1 =0, whence a solution will have the form

1+v3\" 1-v3\"
o) )

The initial conditions give

0=A+B,
1++/5 1-v5) 1 V5 V5
1—A< 2 >+B< > >—§(A+B)+7(A—B)—7(A—B)
1 1
This gives A = —,B = ———. We thus have the Cauchy-Binet Formula:
P 1+v5)" 1 (1-v5)" 76
Vs 2 Vi 2 '

330 Example Solve the recursion xg = 1,x; =4,x, =4x,_1 —4x,_» =0.

Solution: The characteristic equation is x> — 4x +4 = (x —2)? = 0. There is a multiple root and so we must test a solution of the form
xp, = A2" + Bn2". The initial conditions give
1=A,

4 =2A+2B.
This solves to A = 1,B = 1. The solution is thus x, = 2" +n2".

7.4 Applications of Recursions

331 Example Find the recurrence relation for the number of n digit binary sequences with no pair of consecutive 1’s.
Solution: It is quite easy to see that a; = 2,ap, = 3. To form a,,n > 3, we condition on the last digit. If it is O, the number of sequences
sought is a,,_1. If it is 1, the penultimate digit must be 0, and the number of sequences sought is a,,_». Thus

an=ap_1+ay_2,a1 =2, ap =3.

332 Example Let there be drawn n ovals on the plane. If an oval intersects each of the other ovals at exactly two points and no three ovals
intersect at the same point, find a recurrence relation for the number of regions into which the plane is divided.

Solution: Let this number be a,. Plainly a; = 2. After the n — 1th stage, the nth oval intersects the previous ovals at 2(n — 1) points, i.e. the
nth oval is divided into 2(n — 1) arcs. This adds 2(n — 1) regions to the a,—; previously existing. Thus

an=ap_1+2(n—1), ag =2.
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333 Example Find a recurrence relation for the number of regions into which the plane is divided by # straight lines if every pair of lines

intersect, but no three lines intersect.

Solution: Let a, be this number. Clearly a; = 2. The nth line is cut by he previous n — 1 lines at n — 1 points, adding n new regions to the

previously existing a,,—1. Hence

a, =a,_|+n, a; =2.

334 Example (Derangements) An absent-minded secretary is filling n envelopes with n letters. Find a recursion for the number D,, of ways
in which she never stuffs the right letter into the right envelope.

Solution: Number the envelopes 1,2,3,--- ,n. We condition on the last envelope. Two events might happen. Either nand r(1 <r <n-—1)

trade places or they do not.

In the first case, the two letters r and n are misplaced. Our task is just to misplace the other n—2 letters, (1,2,--- ,r —1,r+1,--- ,n—1) in
the slots (1,2,---,r—1,r+1,--- ,n—1). This can be done in D,_, ways. Since r can be chosen in n — 1 ways, the first case can happen in

(n—1)D,_p ways.

In the second case, let us say that letter r, (1 < r < n— 1) moves to the n-th position but n moves not to the -th position. Since r has been
misplaced, we can just ignore it. Since n is not going to the r-th position, we may relabel n as . We now have n — 1 numbers to misplace,

and this can be done in D,,_| ways.

As r can be chosen in n — 1 ways, the total number of ways for the second case is (n —1)D,,—;. Thus D, = (n—1)Dp_2 + (n—1)Dj_;.

335 Example There are two urns, one is full of water and the other is empty. On the first stage, half of the contains of urn I is passed into
urn II. On the second stage 1/3 of the contains of urn II is passed into urn I. On stage three, 1/4 of the contains of urn I is passed into urn II.

On stage four 1/5 of the contains of urn II is passed into urn I, and so on. What fraction of water remains in urn I after the 1978th stage?

Solution: Let x,,,y,,n =0,1,2,... denote the fraction of water in urns I and II respectively at stage n. Observe that x,, +y, = 1 and that

x0o=1;y0=0

1 1., _ 1
X1 =X0 = 3X0 = 73;Y1 = Y1+ 3X0

1 2., _ 1
Xy =X1+3Y1=3Y2=Y1—

wl
=

1 1., _ 1
X3 =X — zX2 = 3;Y1 = Y1+ 3%

1 3., _ 1

X4 =X3+3Y3=5Y1 =Y1 —35)3
_ 1, 1., _ 1

X5 =X4— X4 = 5;¥1 = Y1+ 5X4
1 4. _ 1

X =X5+5Y5 = 7:Y1 =Y1— 75
_ 1. 1., _ 1

X7 =X6 — gX6 = 5:¥1 = Y1+ gX6

1 5.0 _ 1
X§ =X7+g5Y7 = 5:Y1 =Y1 — )7

I
~jw

1
2

4
9

A pattern emerges (which may be proved by induction) that at each odd stage n we have x,, =y, = % and that at each even stage we have (if

k+1 k :
n=2k) xy, = ﬁ,y% = 5T Since

Homework

336 Problem Find the sum of all the integers from 1 to 1000 inclusive, which are not multiples of 3 or 5.

1978

5 =

989 we have xj978 = %.

337 Problem The sum of a certain number of consecutive positive integers is 1000. Find these integers. (There is more than one solution.

You must find them all.)

338 Problem Use the identity

n—(n—1)> =50* — 100> + 100> =50+ 1.
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and the sums

= +1
1 1+2+...+n_"(" )7
=12 22"""-ﬁ-nsz7
2
= +1
$3 P’y n3_<n(n2 ))7

in order to find
sa=1"4+2%4 . 4nt

339 Problem Find the exact value of | | |

135 357 T597.999-1001"

Answers

336 We compute the sum of all integers from 1 to 1000 and weed out the sum of the multiples of 3 and the sum of the multiples of 5, but put
back the multiples of 15, which we have counted twice. Put

Ap=14+243+---+n,
B=34+64+9+4---+999 =3A333,
C=5+10+15+---+1000 = 54500,
D=154+30+4454---4+990 = 15A¢¢-
The desired sum is

A1poo —B—C+D A1000 —3A333 — 5A200 + 15466

500500 —3-55611 —5-20100+15-2211
= 266332.

21 1
337 Let the the sum of integers be S = (I + 1)+ (/ +2) 4 (I +n). Using Gauss’ trick we obtain S = L;Jr) As § = 1000,
2000 = n(2l +n+1). Now 2000 = n? +2in+n > n*, whence n < |1/2000 | = 44. Moreover, n and 2/ +n+ 1 are divisors of 2000 and are of
opposite parity. Since 2000 = 2#53, the odd factors of 2000 are 1, 5,25, and 125. We then see that the problem has the following solutions:
n=1,1=999,
n=>5,1=197,
n=16, =54,
n=25,1=27.

338 Using the identity for n = 1 to n:
w = 5s4 — 1053 + 10sp — 551 +n,

whence
5
sS4 = %+2S3—2S2+S1—g
B ﬁ+n2(n+1)2_n(n+1)(2n+l)+n(n+1)_ﬁ
5 2 3 2 5
_ n n n* . n n
o5 23 30
339 Observe that
1 1 4

(2n—1)(2n+1) (2n+1)(2n+3) (2n—1)2n+1)(2n+3)"
Letting n = 1 to n = 499 we deduce that
4 4 4

1 1
135 357 "1T597.909-1001 ~ 1.3 999-1001°

whence the desired sum is
1 1 83333

4-1-3  4.999-1001 999999 °
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Chapter

Graph Theory

8.1 Simple Graphs

340 Definition A simple graph (network) G = (V,E) consists of a non-empty set V (called the vertex (node) set) and a set E (possibly
empty) of unordered pairs of elements (called the edges or arcs) of V.

Vertices are usually represented by means of dots on the plane, and the edges by means of lines connecting these dots. See figures 8.1
through 8.4 for some examples of graphs.

341 Definition If v and v/ are vertices of a graph G which are joined by an edge e, we say that v is adjacent to v/ and that v and ' are
neighbours, and we write e = vv'. We say that vertex v is incident with an edge e if v is an endpoint of e. In this case we also say that e is
incident with v.

V3
V2 Vi
[ ] o————0
Vi V2 Vi V2 Vi
V3 V4
Figure 8.1: A graph Figure 8.2: A graph Figure 8.3: A graph Figure 84: A graph
with card(V) = 1 and with card(V) = 2 and with card(V) = 3 and with card(V) = 3 and
card (E) =0. card(E) =1. card (E) = 3. card (E) =5.

342 Definition The degree of a vertex is the number of edges incident to it.

Depending on whether card (V') is finite or not, the graph is finite or infinite. In these notes we will only consider finite graphs.

Our definition of a graph does not allow that two vertices be joined by more than one edge. If this were allowed we would obtain a
multigraph. Neither does it allow loops , which are edges incident to only one vertex. A graph with loops is a pseudograph.

343 Definition The complete graph with n vertices K, is the graph where any two vertices are adjacent. Thus K}, has (’21) edges.

Figure 8.1 shews K7, figure 8.2 shews K, , figure 8.3 shews K3, and figure 8.5 shews Ky, figure 8.6 shews Ks.
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344 Definition Let G = (V,E) be a graph. A subset S C V is an independent set of vertices if uv ¢ E for all u,v in S (S may be empty). A
bipartite graph with bipartition X,Y is a graph such that V =X UY,XNY = @, and X and Y are independent sets. X and Y are called the
parts of the bipartition.

345 Definition K, , denotes the complete bipartite graph with m+n vertices. One part, with m vertices, is connected to every other vertex
of the other part, with n vertices.

346 Definition A u—v walk in a graph G = (V, E) is an alternating sequence of vertices and edges in G with starting vertex u and ending
vertex v such that every edge joins the vertices immediately preceding it and immediately following it.

347 Definition A u—v frail in a graph G = (V, E) is a u — v walk that does not repeat an edge, while a u — v path is a walk that which does
not repeat any vertex.

348 Definition P, denotes a path of length n. It is a graph with n edges, and n+ 1 vertices vov; - - - v, where v; is adjacent to v,y for
n=0,1,....n—1.

349 Definition C, denotes a cycle of length n. It is a graph with n edges, and n vertices v; - - - v, where v; is adjacent to v;; for
n=1,...,n—1, and v; is adjacent to v,.

350 Definition Q, denotes the n-dimensional cube. It is a simple graph with 2" vertices, which we label with n-tuples of 0’s and 1°s.
Vertices of Q,, are connected by an edge if and only if they differ by exactly one coordinate. Observe that Q,, has n2"~! edges.

Figure 8.7 shews K3 3, figure 8.8 shews P, figure 8.9 shews Cs, figure 8.10 shews O, and figure 8.11 shews Q3.

351 Definition A subgraph G = (V1,E;) of a graph G = (V,E) is a graph with V; CV and E; CE.

) Vi B A B C 1) Vi
C
A
D E

V3 Vq D E F V3 V4

Figure 8.5: Kj. Figure 8.6: Ks. Figure 8.7: K3 3. Figure 8.8: P;.

B 010 110 A
C B
F
000 100
Figure 8.9: Cs. Figure 8.10: Q». Figure 8.11: Q5. Figure 8.12: Example 352.

We will now give a few examples of problems whose solutions become simpler when using a graph-theoretic model.

352 Example If the points of the plane are coloured with three different colours, red, white, and blue, say, shew that there will always exist
two points of the same colour which are 1 unit apart.
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Solution: In figure 8.12 all the edges have length 1. Assume the property does not hold and that A is coloured red, B is coloured white, D
coloured blue. Then F must both be coloured red. Since E and C must not be red, we also conclude that G is red. But then F and G are at
distance 1 apart and both coloured red which contradicts our assumption that the property did not hold.

353 Example A wolf, a goat, and a cabbage are on one bank of a river. The ferryman wants to take them across, but his boat is too small to
accommodate more than one of them. Evidently, he can neither leave the wolf and the goat, or the cabbage and the goat behind. Can the
ferryman still get all of them across the river?

Solution: Represent the position of a single item by O for one bank of the river and 1 for the other bank. The position of the three items can
now be given as an ordered triplet, say (W,G,C). For example, (0,0,0) means that the three items are on one bank of the river, (1,0,0)
means that the wolf is on one bank of the river while the goat and the cabbage are on the other bank. The object of the puzzle is now seen to
be to move from (0,0,0) to (1,1, 1), that is, traversing Q3 while avoiding certain edges. One answer is

000 — 010 — 011 — 001 — 101 — 111.

This means that the ferryman (i) takes the goat across, (ii) returns and that the lettuce over bringing back the goat, (iii) takes the wolf over,
(iv) returns and takes the goat over. Another one is

000 — 010 — 110 — 100 — 101 — 111.

This means that the ferryman (i) takes the goat across, (ii) returns and that the wolf over bringing back the goat, (iii) takes the lettuce over,
(iv) returns and takes the goat over. The graph depicting both answers can be seen in figure 8.13. You may want to visit

http://www.cut-the-knot.org/ctk/GoatCabbageWolf.shtml

for a pictorial representation.

011 001

000 111

110 100

Figure 8.13: Example 353.

354 Example (E6tvés Mathematical Competition, 1947) Prove that amongst six people in a room there are at least three who know one
another, or at least three who do not know one another.

Solution: In graph-theoretic terms, we need to shew that every colouring of the edges of Kg into two different colours, say red and blue,
contains a monochromatic triangle (that is, the edges of the triangle have all the same colour). Consider an arbitrary person of this group
(call him Peter). There are five other people, and of these, either three of them know Peter or else, three of them do not know Peter. Let us
assume three do know Peter, as the alternative is argued similarly. If two of these three people know one another, then we have a triangle
(Peter and these two, see figure 8.14, where the acquaintances are marked by solid lines). If no two of these three people know one another,
then we have three mutual strangers, giving another triangle (see figure 8.15).

355 Example Mr. and Mrs. Landau invite four other married couples for dinner. Some people shook hands with some others, and the
following rules were noted: (i) a person did not shake hands with himself, (ii) no one shook hands with his spouse, (iii) no one shook hands
more than once with the same person. After the introductions, Mr. Landau asks the nine people how many hands they shook. Each of the
nine people asked gives a different number. How many hands did Mrs. Landau shake?

Solution: The given numbers can either be 0,1,2,...,8,0r 1,2,...,9. Now, the sequence 1,2,...,9 must be ruled out, since if a person shook
hands nine times, then he must have shaken hands with his spouse, which is not allowed. The only permissible sequence is thus 0,1,2,...,8.
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Figure 8.14: Example 354. Figure 8.15: Example 354.

Consider the person who shook hands 8 times, as in figure 8.16. Discounting himself and his spouse, he must have shaken hands with
everybody else. This means that he is married to the person who shook 0 hands! We now consider the person that shook 7 hands, as in figure
8.17. He didn’t shake hands with himself, his spouse, or with the person that shook 0 hands. But the person that shook hands only once did
so with the person shaking 8 hands. Thus the person that shook hand 7 times is married to the person that shook hands once. Continuing this
argument, we see the following pairs (8,0), (7,1), (6,2), (5,3). This leaves the person that shook hands 4 times without a partner, meaning
that this person’s partner did not give a number, hence this person must be Mrs. Landau! Conclusion: Mrs. Landau shook hands four times.
A graph of the situation appears in figure 8.18.

Mr. Landau Mr. Landau Mr. Landau

Figure 8.16: Example 355. Figure 8.17: Example 355. Figure 8.18: Example 355.

8.2 Graphic Sequences

356 Definition A sequence of non-negative integers is graphic if there exists a graph whose degree sequence is precisely that sequence.

357 Example The sequence 1,1, 1 is graphic, since K3 is a graph with this degree sequence, and in general, so is the sequence n,n,...,n,
——

n+1n's
since K, 1 has this degree sequence. The degree sequence 1,2,2,...,2,1 is graphic, since P, has this sequence. The degree sequence
——

n twos

n twos

1,2,3,4,5,6,7,8,9 is not.

Figure 8.19: Theorem 358. Figure 8.20: Theorem 358. Figure 8.21: Theorem 358. Figure 8.22: Theorem 358.

358 Theorem (Havel-Hakimi) The two degree sequences
I: a>by>2by > >bg>c1>cp > > cp,

II: bl717b2717"'7bd717C17C27"'7C117
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are simultaneously graphic.

Proof: Assume first that the sequence I is graphic. There is a graph G' with degree sequence equal to sequence I11. We
construct the graph G from G' by adding a vertex and connecting it to the vertices whose degrees are by —1,by —1,--+ ,b, — 1.
Then G is a graph whose degree sequence is sequence I, and so Il = 1.

Assume now that sequence 1 is graphic. Let A, B;,C; be vertices with degA = a,deg B; = b;, and degC; = c;, respectively. If A
were adjacent to all the B;, our task is finished by simply removing A. So assume that there is B; to which A is not adjacent,
and a Cj to which A is adjacent. As the sequence is arranged in decreasing order, we must have b; > c;. If it happens that

b; = cj, we then simply exchange B; and D (see figures 8.19 and 8.20). If b; > cj then B; has at least one more neighbour
than Cj. Call this neighbour D. In this case we remove the edges AC; and B;D and add the edges AB; and DC to obtain a new
graph with the same degree sequence as 11. See figures 8.21 and 8.22. This process is iterated until A is adjacent to all the B;.
This finishes the proof. d

Solution: Using the Havel-Hakimi Theorem successively we have
6,5,4,3,2,2,2,2 —

4,3,2,1,1,1,2 —
4,3,2,2,1,1,1 —
2,1,1,0,1,1 —
2,1,1,1,1,0 —
0,0,1,1,0 —
1,1,0,0,0.

This last sequence is graphic. By the Havel-Hakimi Theorem, the original sequence is graphic.

8.3 Connectivity

360 Definition A graph G = (V,E) is connected if for any two of its vertices there is a path connecting them.

361 Definition A graph is connected if for any two vertices there is a path with these vertices at its ends. A component of a graph is a
maximal connected subgraph.

362 Definition A forest is a graph with no cycles (acyclic). A tree is a connected acyclic graph. A spanning tree of a graph of a connected
graph G is a subgraph of G which is a tree and having exactly the same of vertices as G.

8.4 Traversability

We start with the following, which is valid not only for simple graphs, but also for multigraphs and pseudographs.
363 Theorem (Handshake Lemma) Let G = (V,E) be a graph. Then

Z degv = 2card (E).

veV

Proof: Ifthe edge connects two distinct vertices, as sum traverses through the vertices, each edge is counted twice. If the
edge is a loop, then every vertex having a loop contributes 2 to the sum. This gives the theorem.

364 Corollary Every graph has an even number of vertices of odd degree.

Proof: The sum of an odd number of odd numbers is odd. Since the sum of the degrees of the vertices in a simple graph is
always even, one cannot have an odd number of odd degree vertices.
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365 Definition A rrail is a walk where all the edges are distinct. An Eulerian trail on a graph G is a trail that traverses every edge of G. A
tour of G is a closed walk that traverses each edge of G at least once. An Euler tour on G is a tour traversing each edge of G exactly once,
that is, a closed Euler trail. A graph is eulerian if it contains an Euler tour.

366 Theorem A nonempty connected graph is eulerian if and only if has no vertices of odd degree.

Proof: Assume first that G is eulerian, and let C be an Euler tour of C starting and ending at vertex u. Each time a vertex v is
encountered along C, two of the edges incident to v are accounted for. Since C contains every edge of G, d(v) is then even for
all v # u. Also, since C begins and ends in u, d(u) must also be even.

Conversely, assume that G is a connected noneulerian graph with at least one edge and no vertices of odd degree. Let W be
the longest walk in G that traverses every edge at most once:

W =V0,Y0V1,V1,V1V2,V2,--+,Vn—1,Yn—1Vn; Vn-

Then W must traverse every edge incident to vy, otherwise, W could be extended into a longer walk. In particular, W traverses
two of these edges each time it passes through v, and traverses v,,_1vy at the end of the walk. This accounts for an odd number
of edges, but the degree of v, is even by assumption. Hence, W must also begin at vy, that is, vo = vy,. If W were not an Euler
tour, we could find an edge not in W but incident to some vertex in W since G is connected. Call this edge uv;. But then we can
construct a longer walk:
U, uvi, Vi, ViVit1,---sVn—1Yn, Vo, VoV1y .-+, Vi—1Vi, Vi-

This contradicts the definition of W, so W must be an Euler tour. Q

A

Figure 8.23: Example 367.

Figure 8.24: Theorem 369

The following problem is perhaps the originator of graph theory.

367 Example (Kénigsberg Bridge Problem) The town of Konigsberg (now called Kaliningrad) was built on an island in the Pregel River.
The island sat near where two branches of the river join, and the borders of the town spreaded over to the banks of the river as well as a
nearby promontory. Between these four land masses, seven bridges had been erected. The townsfolk used to amuse themselves by crossing
over the bridges and asked whether it was possible to find a trail starting and ending in the same location allowing one to traverse each of the
bridges exactly once. Figure 8.23 has a graph theoretic model of the town, with the seven edges of the graph representing the seven bridges.
By Theorem 366, this graph is not Eulerian so it is impossible to find a trail as the townsfolk asked.

368 Definition A Hamiltonian cycle in a graph is a cycle passing through every vertex. G is Hamiltonian if it contains a Hamiltonian cycle.

Unlike Theorem 366, there is no simple characterisation of all graphs with a Hamiltonian cycle. We have the following one way result,
however.

369 Theorem (Dirac’s Theorem, 1952) Let G = (V,E) be a graph with n = card (E) > 3 edges whose every vertex has degree > 7. Then
G is Hamiltonian.

Proof: Arguing by contradiction, suppose G is a maximal non-Hamiltonian with with n > 3, and that G has more than 3
vertices. Then G cannot be complete. Let a and b be two non-adjacent vertices of G. By definition of G, G+ ab is
Hamiltonian, and each of its Hamiltonian cycles must contain the edge ab. Hence, there is a Hamiltonian path viv; ...v, in G
beginning at vi = a and ending at v, = b. Put

S={vi:aviy| €E} and {vj:vjbeE}.
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As vy, € SNT we must have card (SUT) = n. Moreover, SNT = &, since if vi§ NT then G would have the Hamiltonian cycle
VIV2 - ViVaVp—1 " VitlVl,
as in figure 8.24, contrary to the assumption that G is non-Hamiltonian. But then
d(a)+d(b) = card (S) +card(T) = card(SUT) +card (SNT) < n.

, we have arrived at a contradiction. Q

But since we are assuming that d(a) > g and d(b) > g

8.5 Planarity

370 Definition A graph is planar if it can be drawn in a plane with no intersecting edges.

371 Example Kj is planar, as shewn in figure 8.25.

Figure 8.25: Example 373.

372 Definition A face of a planar graph is a region bounded by the edges of the graph.
373 Example From figure 8.25, K4 has 4 faces. Face 1 which extends indefinitely, is called the outside face.

374 Theorem (Euler’s Formula) For every drawing of a connected planar graph with v vertices, e edges, and f faces the following formula

holds:
v—e+f=2.

Proof: The proof is by induction on e. Let P(e) be the proposition that v — e+ f = 2 for every drawing of a graph G with e
edges. If e = 0 and it is connected, then we must have v =1 and hence f = 1, since there is only the outside face. Therefore,
v—e+f=1-041=2, establishing P(0).

Assume now P(e) is true, and consider a connected graph G with e+ 1 edges. Either

@ G has no cycles. Then there is only the outside face, and so f = 1. Since there are e+ 1 edges and G is connected, we
must have v =e+2. This gives (e+2) — (e+1)+1=2—1+41 =2, establishing P(e +1).

® or G has at least one cycle. Consider a spanning tree of G and an edge uv in the cycle, but not in the tree. Such an edge
is guaranteed by the fact that a tree has no cycles. Deleting uv merges the two faces on either side of the edge and leaves
a graph G' with only e edges, v vertices, and f faces. G' is connected since there is a path between every pair of vertices
within the spanning tree. So v — e+ f = 2 by the induction assumption P(e). But then

v_et+f=2= (v)—(e+1)+(f+1)=2 = v—e+f=2,
establishing P(e+1).

This finishes the proof. d
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375 Theorem Every simple planar graph with v > 3 vertices has at e < 3v — 6 edges. Every simple planar graph with v > 3 vertices and

which does not have a C3 has e < 2v —4 edges.

Proof: [fv =3, both statements are plainly true so assume that G is a maximal planar graph with v > 4. We may also
assume that G is connected, otherwise, we may add an edge to G. Since G is simple, every face has at least 3 edges in its
boundary. If there are f faces, let F, denote the number of edges on the k-th face, for 1 <k < f. We then have

Fi+F---+Ff>3f.

Also, every edge lies in the boundary of at most two faces. Hence if E j denotes the number of faces that the j-th edge has, then

2e>E 1 +Ey+---+E,.

Since Ey +Ey +-+-+E, = F| + Fp -+ Fr, we deduce that 2e > 3 f. By Euler’s Formula we then have e < 3v—6.

The second statement follows for v =4 by inspecting all graphs G with v = 4. Assume then that v > 5 and that G has no cycle
of length 3. Then each face has at least four edges on its boundary. This gives 2e > 4f and by Euler’s Formula, e <2v—4.U

376 Example Kjs is not planar by Theorem 375 since K5 has (g) =10 edges and 10 > 9 =3(5) — 6.
377 Example Kj 3 is not planar by Theorem 375 since K33 has 3-3 =9 edges and 9 > 8 =2(6) — 4.

378 Definition A polyhedron is a convex, three-dimensional region bounded by a finite number of polygonal faces.

379 Definition A Platonic solid is a polyhedron having congruent regular polygon as faces and having the same number of edges meeting

at each corner.

By puncturing a face of a polyhedron and spreading its surface into the plane, we obtain a planar graph.

380 Example (Platonic Solid Problem) How many Platonic solids are there? If m is the number of faces that meet at each corner of a
polyhedron, and 7 is the number of sides on each face, then, in the corresponding planar graph, there are m edges incident to each of the v
vertices. As each edge is incident to two vertices, we have mv = 2e, and if each face is bounded by n edges, we also have nf = 2e. It follows

from Euler’s Formula that
2e 2e
= e —

<

Thus we only need to check the finitely many cases with 3 <n,m < 5. The table below gives the existing polyhedra.

e+2'

—_

n m|v e f | polyhedron

3 314 6 4 | tetrahedron

4 3|8 12 6 | cube

3 416 12 8 | octahedron

3 5|12 30 20 | icosahedron

5 3120 30 12 | dodecahedron

381 Example (Regions in a Circle) Prove that the chords determined by n points on a circle cut the interior into 1+ (;) + (Z) regions

provided no three chords have a common intersection.
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Solution: By viewing the points on the circle and the intersection of two chords as vertices, we obtain a plane graph. Each intersection of the
chords is determined by four points on the circle, and hence our graph has v = Z + n vertices. Since each vertex inside the circle has degree
4 and each vertex on the circumference of the circle has degree n + 1, the Handshake Lemma (Theorem 363) we have a total of

1
e=>3 (4<Z> +n(n+ 1)>
edges. Discounting the outside face, our graph has

e () ) () )

faces or regions.

Homework

382 Problem Determine whether there is a simple graph with eight vertices having degree sequence 6,5,4,3,2,2,2,2.
383 Problem Determine whether the sequence 7,6,5,4,4,3,2,1 is graphic.

384 Problem (IMO 1964) Seventeen people correspond by mail with one another—each one with all the rest. In their letters only three
different topics are discussed. Each pair of correspondents deals with only one of these topics. Prove that there at least three people who
write to each other about the same topic.

385 Problem If a given convex polyhedron has six vertices and twelve edges, prove that every face is a triangle.

386 Problem Prove, using induction, that the sequence
nonn—1,n—1,...,4,43322 1,1

is always graphic.

387 Problem Seven friends go on holidays. They decide that each will send a postcard to three of the others. Is it possible that every
student receives postcards from precisely the three to whom he sent postcards? Prove your answer!

Answers

383 Using the Havel-Hakimi Theorem, we have
7,6,5,4,4,3,2,1 —
5,4,3,3,2,1,0 —
3,2,2,1,0,0 —
1,1,0,0 —

This last sequence is graphic. Hence the original sequence is graphic.

384 Choose a particular person of the group, say Charlie. He corresponds with sixteen others. By the Pigeonhole Principle, Charlie must
write to at least six of the people of one topic, say topic I. If any pair of these six people corresponds on topic I, then Charlie and this pair do
the trick, and we are done. Otherwise, these six correspond amongst themselves only on topics II or III. Choose a particular person from this
group of six, say Eric. By the Pigeonhole Principle, there must be three of the five remaining that correspond with Eric in one of the topics,
say topic II. If amongst these three there is a pair that corresponds with each other on topic II, then Eric and this pair correspond on topic II,
and we are done. Otherwise, these three people only correspond with one another on topic III, and we are done again.

2 24
385 Let x be the average number of edges per face. Then we must have xf = 2e. Hence x = ~_ 3 3. Since no face can have fewer

than three edges, every face must have exactly three edges.
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386 The sequence 1,1 is clearly graphic. Assume that the sequence
n—1,n—1,...,4,4,3,3,2,2,1,1

is graphic and add two vertices, u,v. Join v to one vertex of degree n — 1, one of degree of n —2,, etc., one vertex of degree 1. Since v is
joined to n— 1 vertices, and u so far is not joined to any vertex, we have a sequence

nn—1ln—1ln—1,n—2,n-2,...,4,4,3,3,2,2,1,0.

Finally, join u to v to obtain the sequence
nnn—1,n—1,...,44,33221,1.

387 The sequence 3,3,3,3,3,3,3 is not graphic, as the number of vertices of odd degree is odd. Thus the given condition is not realisable.
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